Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (1): 1-5    DOI: 10.11901/1005.3093.2015.090
Orginal Article Current Issue | Archive | Adv Search |
Reaction Mechanism of Cu(In, Ga)Se2 Formation During Milling Process of Powder Mixture of Cu2Se, In2Se3 and Ga2Se3
LI Xiaolong, ZHAO Ming, ZHUANG Daming*(), GONG Qianming, CAO Mingjie, OUYANG Liangqi, GUO Li, SUN Rujun, GAO Zedong
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article: 

LI Xiaolong, ZHAO Ming, ZHUANG Daming, GONG Qianming, CAO Mingjie, OUYANG Liangqi, GUO Li, SUN Rujun, GAO Zedong. Reaction Mechanism of Cu(In, Ga)Se2 Formation During Milling Process of Powder Mixture of Cu2Se, In2Se3 and Ga2Se3. Chinese Journal of Materials Research, 2016, 30(1): 1-5.

Download:  HTML  PDF(1116KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Sputtering targets of CIGS quaternary ceramic were fabricated by hot-press sintering the milled powder mixture of Cu2Se, In2Se3 and Ga2Se3. When the milling time of the powders less than 4 h, the sintered targets delaminated, while the delamination disappeared with the prolonging milling time. Therefore the physico-chemical changes of the powder mixture during the milling process and their influence on the delamination of the targets were investigated. The results indicate that with the progress of the milling process, mechanical alloying (MA) occurred, and chalcopyrite Cu(In, Ga)Se2 (CIGS) formed from Cu2Se, In2Se3 and Ga2Se3; With the increasing milling time, CuInSe2 (CIS) formed on the surface of binary copper selenide firstly and CIGS was subsequently generated due to the inward diffusion of Ga; Thus the original blend powders became a mixture of CIGS and residual Ga2Se3 after milling for 48 h. Since CIGS and Cu2-xSe have a similar crystallographic structure, therefore this epitaxial relation may facilitate the formation of CIGS. The disappearance of Cu-Se binary compound and the formation of CIGS restrained the delamination of the CIGS targets in the sintering process.

Key words:  inorganic non-metallic materials      CIGS      mechanical alloying      hot-pressing sintering      sputtering targets     
Received:  15 February 2015     
About author:  *To whom correspondence should be addressed, Tel: (010)62773925, E-mail: dmzhuang@tsinghua.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.090     OR     https://www.cjmr.org/EN/Y2016/V30/I1/1

Time/h Average particle size/μm D10/μm D90/μm
2 1.999 0.835 3.356
4 1.018 0.562 1.553
8 0.843 0.419 1.352
12 0.674 0.346 1.072
16 0.622 0.316 1.013
20 0.581 0.306 0.927
24 0.560 0.300 0.822
48 0.504 0.286 0.722
Table 1  Particle sizes of the powders milled for different times
Time /h Cu/% In/% Ga/% Se/% Cu/(In+Ga) Ga/(In+Ga)
0 23.71 18.56 7.22 50.52 0.920 0.280
4 23.31 18.34 7.13 51.22 0.915 0.280
24 23.37 18.37 7.03 51.23 0.920 0.277
48 23.39 18.32 6.99 51.30 0.924 0.276
Table 2  Compositions of the mixed powders milled for different times (atomic fraction)
Fig.1  XRD spectra of powders for different milling times, (a) 4 h, (b) 12 h, (c) 24 h, (d) 48 h
Cu2-xSe CIS CIGS
Structure Cubic Tetragonal Tetragonal
XRD PDF card No. 06-0680 40-1484 35-1102
a/nm 0.5739 0.5782 0.5736
b/nm 0.5739 0.5782 0.5736
c/nm 0.5739 1.1619 1.1448
α/(°) 90 90 90
β/(°) 90 90 90
γ/(°) 90 90 90
Table 3  Lattice parameters of Cu2-xSe, CIS and CIGS
Fig.2  Raman spectra of powders milled for 4 h (a) and 12 h (b)
Fig.3  Phase diagram of Cu-Se[19]
1 P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buechelers, A. N. Tiwari, Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules, J. IEEE Photovolt., 3(1), 572(2013)
2 P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla,Properties of Cu(In, Ga)Se2 solar cells with new record efficiencies up to 21.7%, Phys. Status. Solidi. A-Rapid Res. Lett., 9(1), 1(2014)
3 LI Chunlei, ZHUANG Daming, ZHANG Gong, LUAN Hexin, LIU Jiang, SONG Jun, The influence of selenization temperature on the properties of CuInGaSe2 Thin Films, Chin. J. Mater. Res., 24(4), 358(2010)
(李春雷, 庄大明, 张弓, 栾和新, 刘江, 宋军, 硒化温度对铜钢稼硒太阳能电池吸收层性能的影响, 材料研究学报, 24(4), 358(2010))
4 F. F. Liu, Y. Sun, Q. He, Z. Q. Zhou, Rapid thermal annealing on CdS/Cu(In, Ga)Se2 based solar cells, in: 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE), edited by IEEE (Chengdu, IEEE, 2013) p.143
5 J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus, I. D. Aggarwal, Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization, Thin Solid Films, 519(22), 7763(2011)
6 C. P. Liu, C. L. Chuang, Fabrication of CIGS nanoparticle-ink using ball milling technology for applied in CIGS thin films solar cell, Powder Technol., 229, 78(2012)
7 J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Sun, S. M. Huang,Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target, Prog. in Photovolt.: Res. and Appl., 19(2), 160(2011)
8 K. Utsumi, O. Matsunaga, T. Takahata, Low resistivity ITO film prepared using the ultra high density ITO target, Thin Solid Films, 334(1), 30(1998)
9 N. Zhang, D. M. Zhuang, G. Zhang, An investigation on preparation of CIGS targets by sintering process, Mater. Sci. Eng. B, 166, 34(2010)
10 J. Liu, D. M. Zhuang, H. X. Luan, M. J. Cao, M. Xie, X. L. Li,Preparation of Cu(In, Ga)Se2 thin film by sputtering from Cu(In, Ga)Se2 quaternary target, Prog. Nat. Sci., 23(2), 133(2013)
11 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla,New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%, Prog. in Photovolt.: Res. and Appl., 19(7), 894(2011)
12 J. Zhu, Q. Li, L. Bai, Y. Sun, M. Zhou, Y. Xie,Metastable tetragonal Cu2Se hyperbranched structures: large-scale preparation and tunable electrical and optical response regulated by phase conversion, Chem. Eur. J., 18(41), 13213(2012)
13 M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander, M. M.Al-Jassim, Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films, J. Appl. Phys., 82(6), 2896(1997)
14 C. D. Kim, M. S. Jin, W. T. Kim,Growth and characterization of ordered vacancy chalcopyrite CuIn3Se5 and Cu(In, Ga)3Se5 single crystals, J. Korean Phys. Soc., 30(3), 750(1998)
15 W. Witte, R. Kniese, M. Powalla, Raman investigations of Cu(In, Ga)Se2 thin films with various copper contents, Thin Solid Films, 517(2), 867(2008)
16 J. Weszka, Ph. Daniel, A. Burian, A. M. Burian, A. T. Nguyen, Raman scattering in In2Se3 and InSe2 amorphous films, J. Non.-Cryst. Solids., 265, 98(2000)
17 B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, C. J. Chunnilall, Raman spectra of thin solid films of some metal sulfides, J. Mol. Struct., 410, 267(1997)
18 P. Dubček, B. Etlinger, K. Furić, M. Kranjčec, Raman spectra of (GaxIn1-x)2Se3, Phys. Status. Solidi.(a), 122(1), K87(1990)
19 D. J. Chakrabarti, D. E. Laughlin,The Cu-Se (copper-selenium) system, J. Phase Equilib., 2(3), 305(1981)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!