Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (1): 6-9    DOI: 10.11901/1005.3093.2015.345
Orginal Article Current Issue | Archive | Adv Search |
Influence of Nanocrystallization on Adsorption Behavior of Cl- on Fe20Cr Alloy in 0.1 mol/L Cl- Borate Buffer Solution
ZHANG Bin1,2, LIU Li2,**(), LI Tianshu2, LI Ying2, LEI Mingkai1, WANG Fuhui2
1. Dalian University of Technology, Dalian 116024, China
2. Institute of metal research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Bin, LIU Li, LI Tianshu, LI Ying, LEI Mingkai, WANG Fuhui. Influence of Nanocrystallization on Adsorption Behavior of Cl- on Fe20Cr Alloy in 0.1 mol/L Cl- Borate Buffer Solution. Chinese Journal of Materials Research, 2016, 30(1): 6-9.

Download:  HTML  PDF(4857KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of nanocrystallization on the adsorption of Cl- on Fe20Cr alloy in [Cl-] =0.1 mol/L borate buffer solution was investigated by means of X-ray photoelectron spectrum(XPS) and calculations per the first-principles. The results show that the influence of Cr on Cl- adsorption behavior could be described as the following two aspects : the one, in view of the calculation per the first-principles, is that the adsorption energy decrease with the increasing Cr content at the interface of passive film/alloy, which is conducive to the adsorption of Cl-; the other is that the Cr enrichment may also facilitate the formation of passivation film, which inhibit the Cl- adsorption. Nanocrystallization may enhance the diffusivity of Cr, which leads to the enrichment of Cr within the passive film as well as at the interface of passive film/alloy. Thus, nanocrystallization can inhibit the adsorption and the inward migration of Cl-, and finally enhance the corrosion resistance of the alloy.

Key words:  metallic materials      nanocrystallization      XPS      first-principles calculation      Fe20Cr alloy      Cl- adsorption     
Received:  15 June 2015     
Fund: *Supported by the National Natural Science Fundation of China Nos. 50801063、51271187 and National Key Basic Research Program No. 2014CB643303.
About author:  **To whom correspondence should be addressed, Tel: (024)23925323, E-mail: liliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.345     OR     https://www.cjmr.org/EN/Y2016/V30/I1/6

Al Mn Ni Ti S P C Si Cr Fe
Fe20Cr <0.01 <0.05 0.27 <0.02 0.0025 0.006 0.0035 <0.05 19.65 Bal.
Table 1  Chemical compositions of FeCr alloys (%, mass fraction)
Fig.1  Optical micrograph of Fe20Cr alloy
Fig.2  TEM and corresponding electron diffraction pattern of NC thin film
Fig.3  SEM micrograph for cross-section of NC thin film
Fig.4  XRD patterns for CC alloyand NC thin film
Fig.5  Potentiodynamic polarization curves for the CC alloy and NC thin film in 0.15 M B(OH)3 + 0.075 M Na2B4O710H2O+0.1M NaCl solution
Fig.6  Mott-Schottky plots of cast Fe20Crand nanothin film in0.15 M B(OH)3 + 0.075 M Na2B4O710H2O+0.1M NaCl solution
Fig.7  XPS survey of Fe20Cr alloy surface after polarization
Fig.8  Depth profile of Cl2p on CC alloy and NC thin film by XPS
Fig.9  The depth profile of Cl% on CC alloy and NC thin film by XPS
Parameter Cr0 Crox Fe0 Feox
B.E/ev 574.0 +2.0 706.9 +3.9
FWHM 1.5 2.5 1.34 2.5
L% 45 95 45 95
Tail mix% - - 22.02 -
Tail exponent - - 0.0526 -
Table 2  Peak fitting parameters for Fe2p3, Cr2p3 which are used in analysis of XPS
CroxFeox+Crox Cr0+Fe0Cr+Fe
Nano thin film 0.949 0.598
Cast alloy 0.813 0.518
Table 3  Cr enrichment in the passive film (Crox/Feox+Crox) and the thickness of the passive film (Fe0+Cr0/Cr+Fe) as calculated from the Fe2p3 and Cr2p3 XPS spectrums
Fig.10  Fe2p3spectrumand curves fitting on cast alloy and nano thin film after 300 s polarization at 0.2 V
Fig.11  Cr2p3spectrumand curves fitting on cast alloy and nano thin film after 300 s polarization at 0.2 V
Fig.12  Fe (110) (7 atomic layers) with a vacuum layer of 10Å on side view and the diagram of different Cl- adsorption sites (T: on-top; H: hollow; B: bridge) on top view: the blue spheres represents Fe atom
Surface Position Eads(eV) dCl-(nm)
(100) T -0.48 0.218
H -0.48 0.225
B -0.67 0.163
(110) T -0.27 0.219
H -0.73 0.163
B -0.30 0.216
Table 4  Adsorption energy (Eads) and adsorption distance (dCl-) for Cl- adsorbed in T (on-top), H (hollow), B (bridge) sites on Fe(100) and Fe(110) calculated by the first principles calculations
Fig.13  Side (left) and top (right) view of Fe (100) (7 atomic layers, 2 × 2 surfaces) separated by a vacuum layer of 10 Å with Cl- on the bridge site and the four different Cr substitution sites on the top surface of Fe(100) with 25% Cr. The blue spheres represent Fe atom, the bigger green spheres represent Cl-
Fig.14  Cr substitute Fe on the top layer (a) with 25% Cr, (b) with 50% Cr, (c) with 75% Cr. The blue spheres represent Fe atom, the yellow spheres represent Cr atom, the bigger green spheres represent Cl-
Et (eV) dCl-(nm)
25%Cr -26280.00 0.195
50%Cr -27878.18 0.191
75%Cr -29481.56 0.185
Table 5  Effect of Cr content on the interface to the total energy (Et) and adsorption distance (dCl-) for Cl- adsorbed in B (bridge) sites on Fe(100) calculated by the first principles calculations
1 P. C. Pistorius, G. T. Burstein, Metastable pitting corrosion of stainless steel and the transition to stability, Phil. Trans. R. Soc. Lond. A, 341, 531(1992)
2 N. Sato, A theory for breakdown of anodic oxide films on metals, Electrochim. Acta, 16, 1683(1971)
3 P. Marcus, V. Maurice, H.H. Strehblow, Localized corrosion(pitting): A model of passivity breakdown including the role of the oxide layer nanostructure, Corrosion Science, 50, 2698(2008)
4 S. M.Abd EI Haleem, S. Abd EI Wanees, E. E, Abd EI Aal, A. Dial, Environmental factors affecting the corrosion behavior of reinforcing steel Ⅳ, Variation in the pitting corrosion current in relation to the concentration of the aggressive and the inhibitive anions, Corrosion Science, 52, 1675(2010)
5 F. Rosalbino, R. Carlini, R. Parodi, G. Zanicchi, G. Scavino, Investigation of passivity and its breakdown on Fe3Al-Si and Fe3Al-Ge intermetallics in chloride-containing solution, Corrosion Science, 85, 394(2014)
6 W. Zeiger, M. Schneider and D. Scharnweber, Corrosion behavior of a nancrystalline FeAl8 alloy, Nanostructured Materials, 6, 1013(1995)
7 Kh. M. S.Youssef, C. C. Koch and P. S. Fedkiw, Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition, Corros.Sci., 46, 51(2004)
8 L. P. Wang, J. Y. Zhang, Y. Gao, Q. J. Xue, L. T.Hu and T. Xu, Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution, Scripta. Mater., 55, 657(2006)
9 X. Y.Wang and D.Y. Li, Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel, Electrochim. Acta, 47, 3939(2002)
10 C. Pan, Li Liu, Ying Li, Fuhui Wang, Pitting corrosion of 304ss nanocrystalline thin film, Corros. Sci., 73, 32(2013)
11 L. Liu, Y. Li, F. H. Wang, Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions, Electrochim. Acta, 52, 2392(2007)
12 L. Liu, Y. Li, F.H. Wang, Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl, Electrochimica. Acta, 52, 7193(2007)
13 B. Zhang, Y. Li, F. H. Wang, Electrochemical corrosion behavior of microcrystalline aluminium in acidic solutions, Corrosion Science, 49, 2071(2007)
14 W. P. Yang, D. Costa, P. Marcus, Resistance to pitting and chemical composition of passive films of a Fe-17Cr alloy in chloride-containing acid solution, J. Elctrochem.Soc., 141, 2669(1994)
15 V. Maurice, W. P. Yang, P. Marcus,XPS and STM study of passive films formed on Fe22Cr (110) single-crystal surfaces, J. Elctrochem. Soc., 143, 1182(1996)
16 P. D. Han, H. F. Li, X. L. Sun, W. Liang, H. B.Dong and B. S. Xu, Combined first principle and experimental study of oxide/alloy interface evolution during hot rolling 430 stainless steels, Iron making and Steel making, 38, 530(2011)
17 G. M. Kim, Y. J. Oh,K. J. Chang, Effects of interface bonding and defects on boron diffusion at Si/SiO2 interface, Journal of applied physics, 114, 223705(2013)
18 S. L. Shang, H. Z. Fang, J. Wang, C. P. Guo, Y. Wang, P. D. Jablonski, Y. Du and Z. K. Liu, Vacancy mechanism of oxygen diffusivity in bcc Fe: A first-principles study, Corrosion Science, 83, 94(2014)
19 V. Maurice, G. Despert, S. Zanna, M. P. Bacos, P. Marcus, Self-assembling of atomic vacancies at an oxide/intermetallic alloy interface, Nat. Mater., 3, 687(2004)
20 Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64, 1045(1992)
21 Lin J S, Qteish A, Payne M C, Heine V, Optimized and transferablenonlocal separable ab initio pseudopotentials, Phys. Rev. B, 47, 4174(1993)
22 Monkhorst H J, Pack J D, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188(1976)
23 Perdew J P, Wang Y, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 45, 13244(1992)
24 Teter M P, Payne M C, Allan D C, Solution of Schrödinger's equation for large systems, Phys. Rev. B, 40, 12255(1989)
25 Pulay P, Ab initio calculation of force constants and equilibrium geometries theory, Mol. Phys., 17, 197(1969)
26 David R.Lide, CRC Handbook of Chemistry and Physics, 84th editon
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!