Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (2): 115-122    DOI: 10.11901/1005.3093.2015.071
Orginal Article Current Issue | Archive | Adv Search |
Effect of Spinning Solution Parameters on Synthesis of Magnesium Aluminate Spinel Fibers via Electrospinning
CUI Yi1, WEI Hengyong1,2,**, WANG Heyang1(), WEI Yingna1, LIN Jian2, BU Jinglong1, WANG Peng1
1. College of Material Science and Engineering, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Tangshan 063009, China
2. College of Material Science and Engineering, Tongji University, Shanghai 201804, China
Cite this article: 

CUI Yi, WEI Hengyong, WANG Heyang, WEI Yingna, LIN Jian, BU Jinglong, WANG Peng. Effect of Spinning Solution Parameters on Synthesis of Magnesium Aluminate Spinel Fibers via Electrospinning. Chinese Journal of Materials Research, 2016, 30(2): 115-122.

Download:  HTML  PDF(4879KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A solution for electro-spinning of fibers was prepared via non-hydrolytic sol-gel method with ethanol and dimethyl formamide (DMF) as solvent, MgCl2 and AlCl3 as raw material and polyvinylpyrrolidone (PVP) as additive. With the above solution, precursor fibers of magnesia-alumina spinel were prepared by electrospinning technology, which then were calcined at 900℃ to finally produce fibers of magnesia-alumina spinel. The effect of gelation temperature, the content of gel and PVP on the phase composition and microstructure of magnesia-alumina spinel fibers was studied by XRD, FTIR, SEM and TEM. The result shows that magnesia-alumina spinel fibers could be produced with the fiber precursor prepared with the fresh solution which was not subjected to sol-gel treatment, but such fibers were cross-linked seriously and on which there existed significant amount of moniliform particles; For those made of the fiber precursor prepared with the solution after gelation at 120℃, such fibers were apt to fracture and the diameter of which increased with the increasing dosage of gel and PVP; For those made of the fiber precursor prepared with the solution after gelation at 100℃ with a dosage of 0.068 mol/L gel and 0.045 g/mL PVP, the fibers were smooth, continuous and homogeneous with an average diameter 121 nm, and furthermore, these fibers still showed good a morphology even after calcined at 1600℃.

Key words:  inorganic non-metallic Materials      electro-spinning      magnesium aluminate spinel      fibers      non-hydrolysis sol-gel     
Received:  02 February 2015     
ZTFLH:  TQ343+.41  
Fund: *Supported by National Natural Science Foundation of China No.51302064 and Youth Foundation of North China University of Science and Technology No.Z201413
About author:  **To whom correspondence should be addressed, Tel: (0315)2592358, E-mail: why_why2000@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.071     OR     https://www.cjmr.org/EN/Y2016/V30/I2/115

Technological parameter MgCl2
/g
AlCl3
/g
C2H5OH
/mL
CH2Cl2
/mL
PVP
/g
EtOH
/mL
Gel temperature
/℃
Gel temperature Added directly 0.07 0.20 0.25 7.5 0.5 8 Added directly
100 0.07 0.20 0.25 7.5 0.5 8 100
120 0.07 0.20 0.25 7.5 0.5 8 120
Content of gel 0.068 mol/L 0.07 0.20 0.25 7.5 0.5 8 100
0.100 mol/L 0.11 0.30 0.37 11.3 0.5 8 100
0.136 mol/L 0.14 0.40 0.50 15 0.5 8 100
Dosage of PVP 0.027 g/mL 0.07 0.20 0.25 7.5 0.3 8 100
0.045 g/mL 0.07 0.20 0.25 7.5 0.5 8 100
0.063 g/mL 0.07 0.20 0.25 7.5 0.7 8 100
Table1  The experimental scheme
Fig.1  XRD spectra of fiber prepared at different gel temperature
Fig.2  SEM images of fibers at different gel temperatures, (a) added directly, (b) 100℃, (c) 120℃
Fig.3  Diameter distribution of fibers prepared at different gel temperatures
Fig.4  FTIR of magnesium aluminate spinel gel prepared at different gel temperatures
Fig.5  XRD spectra of magnesium aluminate spinel fibers prepared with different gel contents
Fig.6  SEM images of magnesium aluminate spinel fibers prepared with different gel contents, (a) 0.068 mol/L, (b) 0.100 mol/L, (c) 0.136 mol/L
Fig.7  Diameter distribution of magnesium aluminate spinel fibers prepared with different gel contents
Fig.8  XRD spectra of magnesium sluminate spinel fiber prepared with different PVP contents
Fig.9  SEM images of fibers prepared with different PVP contents, (a) 0.027 g/mL, (b) 0.045 g/mL, (c) 0.063 g/mL
Fig.10  Diameter distribution of fibers prepared with different PVP contents
Fig.11  XRD spectra of magnesium aluminate spinel fiber calcined at 900℃ and 1600℃
Fig.12  SEM images of magnesium aluminate spinel fiber calcined at 900℃ (a) and 1600℃ (b)
Fig.13  TEM images of magnesium aluminate spinel fiber calcined at 900℃ (a) and 1600℃ (b)
1 I. Ganesh, A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications, International Materials Reviews, 58(2), 63(2013)
2 YANG Daoyuan, ZHANG Rui, MIAO Jinqi, HU Jinming, LU Hongxia, XU Hongliang,Transparent magnesium aluminum spinel fibre and manufacture method thereof,China Patent, 2006101070740(2007)
(杨道媛, 张锐, 苗晋琦, 胡金明, 卢红霞, 许红亮, 透明镁铝尖晶石纤维及其制备方法, 中国专利, 2006101070740(2007))
3 DUAN Hongjuan, ZHU Hongxi, DENG Chengji, YUAN Wenjie, Influence of temperature and atmosphere on the synthesis of MgAl2O4 spinel fiber, Journal of Synthetic Crystals, 11, 2380(2013)
(段红娟, 祝洪喜, 邓承继, 员文杰, 温度和气氛对合成镁铝尖晶石纤维的影响, 人工晶体学报, 11, 2380(2013))
4 J. M. Boulton, K. Jones, H. G. Emblen, The preparation of spinel fibre by a sol-gel route, Journal of Materials Science Letters, 9(8), 914(1990)
5 Y. LIU, R. M. Laine, Spinel fibers from carboxylate precursor, Journal of the European Ceramic Society, 19(11), 1949(1999)
6 YANG Daoyuan, JIA Xiaolin, GUO Xinrong, ZHANG Haijun, SUN Jialin, ZHONG Xiangcong, Preliminary study on the mechanism of MgAl2O4 fibres growth, Materials Review, 18(z1), 311(2004)
(杨道媛, 贾晓林, 郭新荣, 张海军, 孙加林, 钟香崇, 六方柱状MgAl2O4纤维的合成机理初探, 材料导报, 18(z1), 311(2004))
7 DING Bin, YU Jianyong, Electrospinning and Nanofibers (Beijing, China Textile & Apparel Press, 2011) p.95
(丁彬, 俞建勇, 静电纺丝与纳米纤维(北京, 中国纺织出版社, 2011)p.95)
8 W. M. Kang, A new method for preparing alumina nanofibers by electrospinning technology, Textile Research Journal, 81(2), 148(2011)
9 ZONG Xue, CAI Yibing, SUN Guiyan, ZHAO Yong, HUANG Fenglin, SONG Lei, HU Yuan, FONG Hao, WEI Qufu, Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval, Solar Energy Materials and Solar Cells, 132, 183(2015)
10 M. A. Z.Marjan, K. R. Mansoor, E. Touraj, Effect of viscosity of polyvinyl alcohol solution on morphology of the electrospun mullite nanofibres, Ceramics International, 40(4), 5461(2014)
11 DONG Guoping, XIAO Xiudi, PENG Mingying, MA Zhijun, YE Shi, CHEN Dingdan, QIN Huijun, DENG Guangliang, LIANG Qining, QIU Jianrong, Synthesis and optical properties of chromium-doped spinel hollow nanofibers by single-nozzle electrospinning, RSC Advances, 2, 2773(2012)
12 WEI Hengyong, WANG Heyang, WEI Yingna, YANG Jinping, YU Yun, BU Jinglong, Comparative research on the preparation of MgAl2O4 powders by non-hydrolytic and hydrolytic sol-gel method, Journal of Synthetic Crystals, 42(7), 1384(2013)
(魏恒勇, 王合洋, 魏颖娜, 杨金萍, 于云, 卜景龙, 非水解和水解溶胶-凝胶法合成MgAl2O4粉体对比研究, 人工晶体学报, 42(7), 1384(2013))
13 A. Aboulaich, O. Lorret, B. Boury, P. H. Mutin, Surfactant-free organo-soluble silica-titania and silica nanoparticles, Chemistry of Materials, 21(13), 2577(2009)
14 C. Mit-uppatham, M Nithitanakul, P Supaphol, Ultratine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter, Macromolecular Chemistry and Physics, 205(17), 2327(2004)
15 PEI Lizhai, YIN Wanyun, WANG Jifen, CHEN Jun, FAN Chuanguang, ZHANG Qianfeng, Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process, Materials Research, 13(3), 339(2010)
16 A. K. Adak, S. K. Saha, P. Pramanik, Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique, Journal of Materials Science Letters, 16(3), 234(1997)
17 LIN Jinyou, DING Bin, YU Jianyong, Direct fabrication of highly nanoporous polystyrene fibers via electrospinning, ACS Applied Materials and Interfaces, 2(2), 521(2010)
18 ZONG Xinhua, K Kima, FANG Dufei, RAN Shaofeng, B. S. Hsiao, B Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, 43(16), 4403(2002)
19 LIU Mingquan, SHEN Xiangqian, MENG Xianfeng, SONG Fuzhan, XIANG Jun, Fabrication and magnetic property of M-type strontium ferrite nanofibers by electrospinning, Journal of Inorganic Material, 01, 68(2010)
(刘明权, 沈湘黔, 孟献丰, 宋福展, 向军, M型锶铁氧体纳米纤维静电纺丝和磁性能, 无机材料学报, 01, 68(2010))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[10] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
No Suggested Reading articles found!