Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (9): 656-662    DOI: 10.11901/1005.3093.2014.172
Current Issue | Archive | Adv Search |
Microporosity Reduction By Liquid Cooling Process of A Single Crystal Nickel Based Superalloy
Xiangwei LI1,Li WANG1,**(),Xingang LIU1,Sucheng WANG2,Langhong LOU1
1. Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Xiangwei LI,Li WANG,Xingang LIU,Sucheng WANG,Langhong LOU. Microporosity Reduction By Liquid Cooling Process of A Single Crystal Nickel Based Superalloy. Chinese Journal of Materials Research, 2014, 28(9): 656-662.

Download:  HTML  PDF(3757KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microporosity in a single crystal nickel-based superalloy DD33 solidified by high rate solidification (HRS) and liquid metal cooling (LMC) process was investigated by the X-ray tomography (XRT). It is found that the pressure drop was reduced because of the larger volume fraction of eutectic in the alloy solidified by LMC, which results in less solidification-pore (S-pore) formation. Homogenization-pore (H-pore) forms in interdendritic regions during solution heat treatment, which results in the increase of volume fraction of porosities during heat treatment. However, lower level of H-pore in the LMC samples can be attributed to the finer dendrite arm spacing and the lower segregation.

Key words:  metallic materials      single crystal superalloy      microporosity      LMC      XRT     
Received:  08 April 2014     
Fund: *Supported by National Basic Research Program of China No. 2010CB631201, National Natural Science Foundation of China No. 51201164 and National High Technology Research and Development Program of China No. 2012AA03A511.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.172     OR     https://www.cjmr.org/EN/Y2014/V28/I9/656

Cr Co W Mo Re Al Ti Ta Hf C Ni
DD33 2.5 9 6 1.5 4 6 0.2 8 0.1 0.01 Bal.
Table 1  The nominal compositions of the experimental alloy (%, mass fraction)
Fig.1  Schematic diagram shows the points measured in the dendrite core and interdendritic region
Fig.2  Typical 3-D microstructure of as-cast HRS sample obtained by XRT
Fig.3  As-cast microstructure of alloys solidified by HRS and LMC
Fig.4  Primary dendrite arm spacing and volume fraction of eutectics in alloys cast by HRS and LMC
Fig.5  Partition coefficient of alloying elements in alloys cast by HRS and LMC
Fig.6  Morphology of microporosity in the as-cast alloy by (a) SEM and (b) XRT
Fig.7  Distribution of pore diameter in alloys solidified by HRS and LMC
Fig.8  Morphology of microporosity in the solution heat treated alloy after 1330℃/10 h
Fig.9  Volume fraction of pores in alloys solidified by different process
Fig.10  Distribution of pore diameter in alloys solidified by different process
Fig.11  Schematic of Poisseuille
Fig.12  Generation of homogenization-pore
1 T. M. Pollock, W. H. Murphy, E. H. Goldman, D. L. Uram, J. S. Tu,In: Superalloys 1992, Grain Defect Formation during Directional Solidification of Nickel-Base Single Crystals, edited by S.D. Antolovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (Champion, TMS, 1992) p.125
2 P. Auburtin, T. Wang, S.L. Cockcroft, A. Mitchell,Freckle formation and freckle criterion in superalloy castings, Metall. Mater. Trans., 31(4), 801(2000)
3 J. Madison, J. E. Spowart, D. J. Rowenhorst, L. K. Aagesen, K. Thornton, T. M. Pollock,Fluid flow and defect formation in the three-dimensional dendritic structure of nickel-based single crystals, Metall. Mater. Trans., 43A(1), 369(2012)
4 A. F. Giamei, J. G. Tschinkel,Liquid metal cooling- new solidification technique, Metall. Trans., 7(9), 1427(1976)
5 A. J. Elliott, S. Tin, W. T. King, S. C. Huang, F. X. Gigliotti, T. M. Pollock,Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment, Metall. Mater. Trans., 35A(10), 3221(2004)
6 C. L. Brundidge, J. D. Miller, T. M. Pollock,Development of Dendritic Structure in the Liquid Metal Cooled, Directional-Solidification Process, Metall. Mater. Trans., 42A(9), 2723(2011)
7 D. L. Anton, A. F. Giamei,Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy, Mater. Sci. Eng., 76A(1), 173(1985)
8 Y. Murakami, M. Endo,Effects of Defects, Inclusions and Inhomogeneities on fatigue-strength, Int. J. Fatigue, 16(3), 163(1994)
9 J. B. Le Graverend, J. Cormier, S. Kruch, F. Gallerneau, J. Mendez,Microstructural parameters controlling high-temperature creep life of the nickel-base single-crystal superalloy MC2, Metall. Mater. Trans., 43A(11), 3988(2012)
10 M. Lamm, R. F. Singer,The effect of casting conditions on the high-cycle fatigue properties of the single crystal nickel-base superalloy PWA 1483, Metall. Mater. Trans. A, 38A(6), 1177(2007)
11 S. Roskosz, J. Adamiec,Methodology of quantitative evaluation of porosity, dendrite arm spacing and grain size in directionally solidified blades made of CMSX-6 nickel alloy, Mater. Charact., 60(10) 1120(2009)
12 J. P. Anson, J. E. Gruzleski,The quantitative discrimination between shrinkage and gas microporosity in cast aluminum alloys using spatial data analysis, Mater. Charact., 43(5), 319(1999)
13 C. L. Brundidge, D. Vandrasek, B. Wang, T.M. Pollock,Structure refinement by a liquid metal cooling solidification process for single crystal nickel-base superalloys, Metall. Mater. Trans., 43A(3), 965(2012)
14 E. Niyama, T. Uchida, M. Morikawa, S. Saito,A method of shrinkage prediction and its application to steel casting practice, Cast. Met. J., 6(3), 16(1981)
15 J. Lecomtebeckers,Study of microporosity formation in nickel-base superalloys, Metall. Trans., 19A(9), 2341(1988)
16 H. S. Whitesell, R. A. Overfelt,Influence of solidification variables on the microstructure, macro segregation, and porosity of directionally solidified Mar-M247, Mater. Sci. Eng. A, 318(1-2), 264(2001)
17 G. K. Sigworth, C. M. Wang,Mechanisms of porosity formation during solidification- a theoretical-analysis, Metall. Trans., 24B(2), 349(1993)
18 SHI Qianying,LI Xianghui, ZHENG Yunrong, XIE Guang, ZHANG Jian, FENG Qiang, Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes, Acta Metall. Sin., 48(10), 1237(2012)
18 (石倩颖, 李相辉, 郑运荣, 谢 光, 张 健, 冯 强, HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成, 金属学报, 48(10), 1237(2012))
19 B. S. Bokstein, A. I. Epishin, T. Link, V. A. Esin, A. O. Rodin, I. L. Svedov,Model for the porosity growth in single-crystal nickel-base superalloys during homogenization, Scripta Mater, 57(9), 801(2007)
20 S. Roskosz, J. Adamiec,Methodology of quantitative evaluation of porosity, dendrite arm spacing and grain size in directionally solidified blades made of CMSX-6 nickel alloy, Mater. Charact., 60(10) 1120(2009)
21 T. Link, S. Zabler, A. Epishin, A. Haibel, A. Bansal,Thibault X, Synchrotron tomography of porosity in single crystal nickel-base superalloys, Mater Sci Eng A, 425(1-2), 47(2006)
22 WANG Shaogang,WANG Sucheng, ZHANG Lei, Application of High Resolution Transmission X-Ray Tomography in Material Science, Acta Metall Sin, 49(8), 897(2013)
22 王绍刚, 王苏程, 张 磊, 高分辨透射X射线三维成像在材料科学中的应用, 金属学报, 49(8), 897(2013)
23 LIU Xingang,LEI Qiang, WANG Li, QIAN Bao, LOU Langhong, Microstructural evolution of the third-generation single crystal superalloy DD33 during solution treatment, Chin. J. Mater. Res., 28(6), 407(2014)
23 刘心刚, 雷 强, 王 莉, 李相伟, 钱 宝, 楼琅洪, 第三代单晶高温合金DD33固溶处理过程中的组织演变, 材料研究学报, 28(6), 407(2014)
24 D. Emadi, J. E. Gruzleski, J. M. Toguri,The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation, Metall. Trans., 24B(6), 1055(1993)
25 HU Hanqi, Solidification Mechanism of Metals, (Beijing, Mechanical Industry Press, 2000) p.214
25 胡汉启, 金属凝固原理, (北京, 机械工业出版社, 2000)p.214
26 J. Masison,Fluid flow and defect formation in the three-dimensional dendritic structure of nickel-based single crystals, Metall. Mater. Trans., 43A(1), 369(2012)
27 J. Campbell. Castings, (London, Reed Education and Professional Publishing Ltd, 1991)p.195
28 R. L. Coble, M. C. Flemings,Removal of pores from castings by sintering, Metall. Trans., 2(2), 409(1971)
29 H. Toda, T. Hidaka, M. Kobayashi, K. Uesugi, A. Takeuchi, K. Horikawa,Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure, Acta Mater., 57(7), 2277(2009)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!