Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (9): 649-655    DOI: 10.11901/1005.3093.2014.165
Current Issue | Archive | Adv Search |
Effects of Minor Addition of Sr and Mn on Mechanical Properties of Micro-alloying Mg-8Li-3Al Wrought Alloy
Tiancai XU1,Xiaodong PENG1,2,**(),Bao ZHANG1,Guobing WEI1,Yuanfang CHEN1,3,Junwei JIANG1
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400045
2. Engineering Research Center for Mg Alloys, Chongqing University, Chongqing 400044
3. College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054
Cite this article: 

Tiancai XU,Xiaodong PENG,Bao ZHANG,Guobing WEI,Yuanfang CHEN,Junwei JIANG. Effects of Minor Addition of Sr and Mn on Mechanical Properties of Micro-alloying Mg-8Li-3Al Wrought Alloy. Chinese Journal of Materials Research, 2014, 28(9): 649-655.

Download:  HTML  PDF(8154KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of minor addition of Sr and/or Mn on the microstructure and mechanical properties of the wrought Mg-8Li-3Al alloy were investigated by means of optical microscopy, scanning electron microscopy, X-ray diffraction studies, and tensile tests to reveal the variations in microstructures and mechanical behavior during processing. The results show that the alloy of Mg-8Li-3Al mainly consists of α-Mg, β-Li phases and Al12Mg17 intermetallic compound. Sr and Mn addition results in the precipitation of Al4Sr and Al2Mn3. The microstructure of the alloy is refined with the addition of Sr and Mn, respectively. Moreover, the refining effect of Sr is better than Mn at the same mass fraction addition. The tensile strength of the alloys is improved with the addition of Sr and Mn. The tensile strength, yield stress and elongation of Mg-8Li-3Al-0.5Sr-0.5Mn alloy after extrusion are 242.15 MPa, 206.96 MPa and 22.43%, which are increased by 14.98%, 28.11% and 8.31% respectively in comparison with the those of the bare Mg-8Li-3Al alloy.

Key words:  metallic material      Mg-Li alloy      Sr and Mn      microstructure      mechanical properties     
Received:  03 April 2014     
Fund: *Supported by National Basic Research Program of China No.2007CB613702, Natural Science Foundation of Chongqing Science and Technology Commission No.2008BB4323, International Scientific and Technological Cooperation Project No.2010DFR50010.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.165     OR     https://www.cjmr.org/EN/Y2014/V28/I9/649

Fig.1  Optical micrographs of as-cast alloys: (a) LA83, (b) LA83-0.5Sr, (c) LA83-0.5Mn, (d) LA83-0.5Sr-0.5Mn
Alloy Li Al Sr Mn Mg
As-cast LA83 7.98 3.08
LA83-0.5Sr 8.11 3.15 0.67
LA83-0.5Mn 8.20 3.27 0.51
LA83-0.5Sr-0.5Mn 8.36 3.19 0.53 0.49 Bal.
Table 1  Actual chemical compositions of the experimental alloys (mass fraction, %)
Fig.2  XRD spectra of as-cast alloys: (a) LA83, (b) LA83-0.5Sr, (c) LA83-0.5Mn, (d) LA83-0.5Sr-0.5Mn
Fig.3  SEM micrographs showing microstructure of as-cast alloys and micro-area chemical composition of the alloys by EDS: (a) LA83, (b) LA83-0.5Sr, (c) LA83-0.5Mn, (d) LA83-0.5Sr-0.5Mn
Position Mg Al Sr Mn
A 69.87 30.13 - -
B 77.33 15.03 6.64 -
C 19.39 30.20 - 50.41
D 70.49 20.35 9.16 -
E 75.57 18.89 5.54 -
F 62.90 15.62 - 21.48
Table 2  Micro-area chemical composition of the alloys in Fig.3 by EDS analysis (mole fraction, %)
Fig.4  Optical micrographs of as-extruded alloys: (a) LA83, (b) LA83-0.5Sr, (c) LA83-0.5Mn, (d) LA83-0.5Sr-0.5Mn
Fig.5  Nominal tensile stress–strain curves of as-extruded alloys at room temperature
Fig.6  SEM images of the tensile fracture of the as-extruded alloys: (a) LA83, (b) LA83-0.5Sr, (c) LA83-0.5Mn, (d) LA83-0.5Sr-0.5Mn
Al4Sr (112)// α-Mg (10-10) Al4Sr (112)// α-Mg (0002) Al4Sr (200)// α-Mg (10-11) Al4Sr (213)// α-Mg (10-12) Al4Sr (213)// β-Li (200) Al2Mn3 (310)// α-Mg (10-12) Al2Mn3 (321)// α-Mg (10-12) Al2Mn3 (321)// β-Li (200)
1.38% 5.19% 9.05% 7.66% 0.19% 6.70% 0.46% 2.48
Table 3  Mismatch values of potential matching planes for compounds and matrix (mass fraction, %)
1 ZHENG Xiaofang,PENG Xiaodong, XIE Weidong, SU Zhonghua, LI Wenjuan, Research and application status of lithium and its alloys, Ordnance Material Science and Engineering, 34(4), 94(2011)
1 郑笑芳, 彭晓东, 谢卫东, 苏中华, 李文娟, 锂及其含锂合金的研究与应用现状, 兵器材料科学与工程, 34(4), 94(2011)
2 Hyeon-Taek Son,Yong-Ho Kim, Dae-Won Kim, Jung-Han Kim, Hyo-Sang Yu, Effects of Li addition on the microstructure and mechanical properties of Mg-3Zn-1Sn-0.4Mn based alloys, Journal of Alloys and Compounds, 564, 130(2013)
3 Z. Moser, W. Zakulski, G. Schwitzgebel,Thermodynamic studies and the phase diagram of the Li-Mg system, Metallurgical and Materials Transactions A, 30(9), 1120(1996)
4 M. Karami, R. Mahmudi, Shear punch superplasticity in equal-channel angularly pressed Mg-12Li-1Zn alloy, Materials Science & Engineering A, 576, 156(2013)
5 Alireza Sadeghi,Scott Shookb, Mihriban Pekguleryuz, Yield asymmetry and fracture behavior of Mg-3%Al-1%Zn-(0-1)%Sr alloys extruded at elevated temperatures, Materials Science and Engineering A, 528, 7529(2011)
6 L. Shanga, I. H. Jung, S. Yue, R. Verm, E. Essadiqi,An investigation of formation of second phases in microalloyed, AZ31 Mg alloys with Ca, Sr and Ce, Journal of Alloys and Compounds, 492, 173(2010)
7 T. Liu, S. D. Wu, S. X. Li, P. J. Li, Microstructure evolution of Mg-14%Li-1%Al alloy during the process of equal channel angular pressing, Materials Science and Engineering A, 460, 499(2007)
8 LI Junchen,PENG Xiaodong, LIU Junwei, YANG Yan, ZENG Li, Deformation behavior of alloy Mg-9Li-3Al-2.5Sr at elevated temperature, Chinese Journal of Materials Research, 26(3), 309(2012)
8 李俊辰, 彭晓东, 刘军威, 杨 艳, 曾 利,Mg-9Li-3Al-2.5Sr合金的热变形行为, 材料研究学报, 26(3), 309(2012)
9 Y. C. Lee, A. K. Dahle, D. H. Stjohn,The Role of solute in grain refinement of magnesium, Metallurgical and Materials Transactions A, 31A, 2895(2000)
10 Y. Yang, X. D. Peng, H. M. Wen, B. L. Zheng, Y. Z. Zhou, W. D. Xie, Enrique J. Lavernia,In?uence of extrusion on the microstructure and mechanical behavior of Mg-9Li-3Al-xSr alloys, Metallurgical and Materials Transactions A, 44A(2), 1101(2013)
11 H. M. Fu, D. Qiu, M. X. Zhang, H. Wang, P. M. Kelly, J. A. Taylor,The development of a new grain refiner for magnesium alloys using the edge-to-edge model, Journal of Alloys and Compounds, 45(1-2), 390(2008)
12 B. Jiang, D. Qiu, M. X. Zhang, P. D. Ding, L. Gao,A new approach to grain refinement of an Mg-Li-Al cast alloy, Journal of Alloys and Compounds, 492(1-2), 95(2010)
13 CAO Ye,ZHONG Ning, WANG Xiao-dong, HUANG Bao-xu, RONG Yong-hua, An Edge-to-Edge Matching Model and Its Application to the HCP/FCC System, Journal of Shanghai Jiaotong Universit, 41(4), 586(2007)
13 曹 晔, 钟 宁, 王晓东, 黄宝旭, 戎咏华, 边2边匹配晶体学模型及其应用--HCP/FCC体系晶体学位向关系的预测, 上海交通大学学报, 41(4), 586(2007)
14 N. J. Petch, J. Iron,The cleavage strength of polycrystals, Steel Institute, 174, 25(1953)
15 W. J. Kim, I. K. Moon, S. H. Han,Ultrafine-grained Mg-Zn-Zr alloy with high strength and high-strain-rate superplasticity, Mater. Sci. Eng. A, 538, 374(2012)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!