Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (9): 663-667    DOI: 10.11901/1005.3093.2013.138
Current Issue | Archive | Adv Search |
Effect of Secondary Orientation on Thermal Fatigue Behavior of a Nickel-base Single Crystal Superalloy DD33
Li WANG(),Zhongjiao ZHOU,Weiguo JIANG,Di WANG,Jian SHEN,Langhong LOU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Li WANG,Zhongjiao ZHOU,Weiguo JIANG,Di WANG,Jian SHEN,Langhong LOU. Effect of Secondary Orientation on Thermal Fatigue Behavior of a Nickel-base Single Crystal Superalloy DD33. Chinese Journal of Materials Research, 2014, 28(9): 663-667.

Download:  HTML  PDF(2149KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of secondary orientation on thermal fatigue behavior of a third generation nickel-based single crystal superalloy DD33 was investigated. Samples with different secondary orientations were machined along (100) and (110) plane, respectively, and thermal fatigue test was performed cyclicly between room temperature and 1100oC. It was found that different initiation sites and propagation orientations of the thermal fatigue cracks were observed in samples with different secondary orientations. In samples with secondary orientation of [100], thermal cracks initiated at the edge of the holes along a direction with 45o incline to the directional solidification (DS) direction and propagated along also the derection with 45o incline to the DS direction. While in samples with secondary orientation of [110], thermal cracks initiated at the edge of the holes vertical to the DS direction and propagated along the DS direction. In general, samples with secondary orientation of [100] exhibited better thermal fatigue properties than that of [110] samples.

Key words:  metallic materials      single crystal superalloy      thermal fatigue      secondary orientation     
Received:  26 March 2014     
Fund: *Supported by National Natural Science Foundation of China No.51201164, National Basic Research Program of China No.2010CB631201 and National High Technology Research and Development Program of China No. 2012AA03A511.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.138     OR     https://www.cjmr.org/EN/Y2014/V28/I9/663

Fig.1  Schematic of thermal fatigue samples of different secondary orientations, (a) [100], (b) [110]
Fig.2  Microstructure of the thermal fatigue specimen, (a) small unit taken from the samples, (b) [100] specimen, (c) [110] specimen
Fig.3  BSE morphology of the samples of different secondary orientations after 120 cycles of thermal fatigue test (R.T.-1100oC), (a) [100] specimen, (b) [110] specimen
Fig.4  Kinetics curves of crack propagation during thermal fatigue test
Fig.5  Analysis of thermal stress at different positions, (a) [100], (b) [110]
1 HE Jinrui, Metal High Temperature Fatigue (Beijing, Science Press, 1988)p.208
1 何晋瑞, 金属高温疲劳(北京, 科学出版社, 1988) p.208
2 YUE Zhufeng,YIN Zeyong, YANG Zhiguo, Effect of crystal orientation on the structural strength and the creep rupture life of single crystal blades in aeroengines, Aeroengine, 32(4), 14(1997)
2 岳珠峰, 尹泽勇, 杨治国, 晶体取向对航空发动机单晶叶片结构强度和蠕变寿命的影响, 航空发动机, 32(4), 14(1997)
3 P. A. Sabnis, M. Maziere, S. Forest, Nagaraj K. Arakere, F. Ebrahimi,Effect of secondary orientation on notch-tip plasticity in superalloy single crystals, Int. J. Plast., 28, 102(2012)
4 N. K. Arakere, G. R. Swanson,Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys, ASME J. Gas Turbines Power, 124, 161(2002)
5 V. Sass, U. Glatzel, M. Feller-Kniepmeier,Anisotropic creep properties of the nickel-base superalloy CMSX-4, Acta Mater, 44, 1967(1996)
6 P. Lukas, J. Cadek, V. Sustek, L. Kunz,Creep of CMSX-4 single crystals of different orientations in tension and compression, Mater. Sci. Eng. A, 208, 149(1996)
7 WEI Pengyi,YANG Zhiguo, CHENG Xiaoming, ZHONG Zhengang, LI Cheng, LIU Shizhong, Tensile creep anisotropy of single crystal superalloy DD3, Journal of Aeronautical Materials, 19(3), 7(1999)
7 魏朋义, 杨治国, 程晓鸣, 钟振刚, 李 聘, 刘世中, DD3单晶高温合金拉伸蠕变各向异性, 航空材料学报, 19(3), 7(1999)
8 JIA Yuxian,JIN Tao, LIU Jinlai, SUN Xiaofeng, HU Zhuangqi, Anisotropic creep in a Ni-based single crystal superalloy, Acta Metallurgica Sinica, 45(11), 1364(2009)
8 贾玉贤, 金 涛, 刘金来, 孙晓峰, 胡壮麒, 一种镍基单晶高温合金的蠕变各向异性, 金属学报, 45(11), 1364(2009)
9 LIU Jinlai,JIN Tao, ZHANG Jinghua, HU Zhuangqi, Anisotropy of high temperature stress rupture property of a Ni base single crystal superalloy, Acta Metallurgica Sinica, 37(12), 1233(2001)
9 刘金来, 金 涛, 张静华, 胡壮麒, 一种镍基单晶高温合金高温持久性能的各向异性, 金属学报, 37(12), 1233(2001)
10 L. Getsov, N. Dobina, A. Rybnikov,Thermal fatigue of a Ni-based superalloy single crystal, Mater. Technol., 41, 2, 67(2007)
11 N. X. Hou, W. X. Gou, Z. X. Wen, Z. F. Yue,The influence of crystal orientations on fatigue life of single crystal cooled turbine blade, Mater. Sci. Eng. A, 492, 413(2008)
12 XIAO Xuan,XU Hui, QIN Xuezhi, GUO Yongan, GUO Jianting, ZHOU Lanzhang, Thermal fatigue behaviors of three cast nickel base superalloys, Acta Metallurgica Sinica, 47(9), 1129(2011)
12 肖 璇, 许 辉, 秦学智, 郭永安, 郭建亭, 周兰章, 3种铸造镍基高温合金热疲劳行为研究, 金属学报, 47(9), 1129(2011)
13 LIU Yuan,YU Jinjiang, XU Yan, SUN Xiaofeng, Thermal fatigue behavior of single-crytal superalloy, Rare Metal Materials and Engineering, 38(1), 59(2009)
13 刘 源, 于金江, 徐 岩, 孙晓峰, 单晶高温合金的冷热疲劳裂纹生长行为研究, 稀有金属材料与工程, 38(1), 59(2009)
14 XIA Pengcheng,YU Jinjiang, SUN Xiaofeng, GUAN Hengrong, HU Zhuangqi, Thermal fatigue property of DZ951 alloy, Rare Metal Materials and Engineering, 37(1), 50(2008)
14 夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒, DZ951合金的热疲劳性能, 稀有金属材料与工程, 37(1), 50(2008)
15 HU Gengxiang, CAI Xun, RONG Yonghua, Fundamentals of Materials Science, 2nd edition (Shanghai, Shanghai Jiaotong University Press, 2006)p.418
15 胡赓祥, 蔡 珣, 戎咏华, 材料科学基础, 第二版(上海, 上海交通大学出版社, 2006) p.418
16 Editorial Committee of Materials Science Engineering Handbook, Materials Science and Engineering Handbook (Vol.2, Wrought Superalloys, Cast Superalloys), 2nd edition (Beijing, China Standard Press, 2002)p.792
16 《工程材料实用手册》编辑委员会编, 工程材料实用手册(第2卷,变形高温合金 铸造高温合金), 第2版(北京, 中国标准出版社, 2002)p.792
17 ZHANG Jinghua,TANG Yajun, ZHANG Zhiya, YU Yang, LI Yingao, ZHANG Jishan, HU Zhuangqi, Factors effecting the properties of stress-rupture at elevated temperature in a single crystal Ni-base superalloy, Chinese Journal of Materials Research, 5(5), 381(1991)
17 张静华, 唐亚俊, 张志亚, 于 洋, 李英敖, 张济山, 胡壮麒, 影响单晶Ni基高温合金持久性能的因素, 材料研究学报, 5(5), 381(1991)
18 LIU Jinlai,JIN Tao, ZHANG Jinghua, HU Zhuangqi, Anisotropy of high temperature stress rupture of a Ni base single crystal superalloy, Acta Metallurgica Sinica, 37(12), 1233(2001)
18 刘金来, 金 涛, 张静华, 胡壮麒, 一种镍基单晶高温合金高温持久性能的各向异性, 金属学报, 37(12), 1233(2001)
19 ZHAO Xinbao,GAO Sifeng, YANG Chubin, ZHANG Jun, LIU Lin, FU Hengzhi, TANG Xin, CAO Lamei, Influence of crystal orientation on microstructure and mechanical properties and its control for nickel-base single crystal superalloys, Materials China, 32(1), 24(2013)
19 赵新宝, 高斯峰, 杨初斌, 张 军, 刘 林, 傅恒志, 汤 鑫, 曹腊梅, 镍基单晶高温合金晶体取向的选择及其控制, 中国材料进展, 32(1), 24(2013)
20 WANG Lei, TU Shandong, Strengthening and Toughening of Materials (Shanghai, Shanghai Jiaotong University Press, 2012) p.54
20 王 磊, 涂善东, 材料强韧学基础(上海, 上海交通大学出版社, 2012) p.54
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!