Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 835-841    DOI: 10.11901/1005.3093.2014.158
Current Issue | Archive | Adv Search |
Preparation and Anticorrosion Performance of Conductive Epoxy Resin Based Composite Coatings
Shinian LIU1,Cheng WANG2,*(),Shengping FAN1,Guohua LU1,Fuhui WANG2
1. Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou 510080
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Shinian LIU,Cheng WANG,Shengping FAN,Guohua LU,Fuhui WANG. Preparation and Anticorrosion Performance of Conductive Epoxy Resin Based Composite Coatings. Chinese Journal of Materials Research, 2014, 28(11): 835-841.

Download:  HTML  PDF(4093KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Conductive epoxy resin based composite coatings were prepared by physical blending process and then applied onto on Q235 carbon steel surface. The results show that there existed lots of micro-blisters in the pure E51 epoxy coating without pigments, which deteriorate the protectiveness of the coatings. In the contrast, the quantity of the micro-blisters of the conductive composite coatings was decreased greatly by adding pigments. The test results of immersion in 3%NaCl solution and salt spray indicated a superior corrosion resistance of the composite coatings. After corrosion test, no bubbling or pickling for the composite coatings could be observed and no corrosion was detected for Q235 carbon steel underneath the coatings. Electrochemical experiments revealed that the impendence of the E51 coating decreased fast, while that of the composite coatings increased with the immersion time in 3.5%NaCl solution. The composite coatings have 'self-healing' ability. The electric resistance and adhesion strength of the composite coatings are in the order of 103 Ωcm and 9.12 MPa respectively.

Key words:  metalic materials      materials failure and protection      anticorrosion      conductive      Q235 steel      epoxy resin     
Received:  03 April 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.158     OR     https://www.cjmr.org/EN/Y2014/V28/I11/835

Elements C Mn Si S P Fe
Content 0.14~0.22 0.3~0.65 ≤0.30 ≤0.050 ≤0.045 bal.
Table 1  Nominal composition of Q235 carbon steel (mass fraction, %)
Compositions E51 5772 501 CF CNT CG FeP TA
Content 34 11 5 30 2 2 11 5
Table 2  Compositions of the composite coatings (mass fraction, %)
Fig.1  EIS for E51 lacquer (a-c) and composite coatings (d-f)
Fig.2  Relationship between corrosion potential and immersion time
Fig.3  Equivalent circuits for Q235 steel coated with epoxy coatings
Fig.4  Relationship between coating resistance and immersion time
Fig.5  Relationship between fb and immersion time
Fig.6  Morphologies of E51 lacquer coatings. Pristine (a); salt spray test for 2000 h (b); corrosion in 3%NaCl solution for 2000 h (c)
Fig.7  SEM morphologies of E51 compound coatings. Pristine (a, b), salt spray exposed for 2000 h (c, d), corrosion in 3%NaCl solution for 2000 h (e, f)
1 S. S. Azim, A. Satheesh, K. K. Ramu, S. Ramu, G. Venkatachari,Studies on graphite based conductive paint coatings, Progress in Organic Coatings, 55, 1(2006)
2 M. I. Khan, A. U.Chaudhry, S. Hashim, M. K. Zahoor, M. Z.Iqbal,Recent developments in intrinsically conductive polymer coatings for corrosion protection, Chemical Engineering Research Bulletin, 14, 73(2010)
3 V. K. Piddubnyi, I. M. Zin', B. M. Lavryshyn, L. M. Bilyi, Y. I. Kolodii, M. B. Ratushna,Effect of carbon-containing fillers on the properties of epoxy coatings, Materials Science, 41, 265(2005)
4 JING Xiabin,WANG Lixiang, WANG Xianhong, GENG Yanhou, WANG Fosong, Synthesis, structure, properties and applications of conducting polyaniline, Acta Polymerica Sinica, 36(5), 655(2005)
4 (景遐斌, 王利祥, 王献红, 耿延候, 王佛松, 导电聚苯胺的合成、结构、性能和应用, 高分子学报, 36(5), 655(2005))
5 J. Foroughi, S. R. Ghorbani, G. Peleckis, G. M. Spinks, G. G. Wallace, X. L. Wang, S. X. Dou, The mechanical and the electrical properties of conducting polypyrrole fibers, 107, 103712(2010)
6 DU Xinsheng,JIAO Hongyu, Research progress of conductive coatings, China Coatings, 24(2), 19(2009)
6 (杜新胜, 焦宏宇, 导电涂料的研究进展, 中国涂料, 24(2), 19(2009))
7 Joel A. Johnson, Matthew J. Barbato, Sharlene R. Hopkins b, Matthew J. O’Malley,Dispersion and film properties of carbon nanofiber pigmented conductive coatings, Progress in Organic Coatings, 47, 198(2003))
8 L. Chen, H. Jin, Z. W. Xu, M. J. Shan, X. Tian, C. Y. Yang, Z. Wang, B. W. Cheng,A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface, Materials Chemistry and Physics, 145, 186(2014))
9 E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T.-W. Chou, M. E. Itkis, R. C. Haddon,Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites, Langmuir, 23, 3970(2007)
10 E. Enríquez, J. de Frutos, J. F. Fernández, M. A. de la Rubia,Conductive coatings with low carbon-black content by adding carbon nanofibers, Composites Science and Technology, 93, 9(2014)
11 A. Lonjon, P. Demont, E. Dantras, C. Lacabanne,Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes, Journal of Non-Crystalline Solids, 358, 1859(2012)
12 Q. H. Zhang, J. W. Liu, R. Sager, L. M. Dai, J. Baur,Hierarchical composites of carbon nanotubes on carbon fiber: Influence of growth condition on fiber tensile properties, Composites Science and Technology, 69, 594(2009)
13 ZHANG Heng,Modification of aluminum dihydrogen tripolyphosphate and its application in anti-corrosive coatings, China Coatings, 28(11), 63(2013)
13 (张 亨, 三聚磷酸二氢铝的改性及在防腐涂料中的应用探讨, 中国涂料, 28(11), 63(2013))
14 Y. Chen, X. H. Wang, J. Li, J. L. Lu, F. S. Wang,Long-term anticorrosion behaviour of polyaniline on mild steel, Corrosion Science, 49, 3052(2007)
15 A. Shi, S. Koka, J. Ullett,Performance evaluation on the weathering resistance of two USAF coating systems (standard 85285 topcoat versus fluorinated APC topcoat) via electrochemical impedance spectroscopy, Progress in Organic Coatings, 52, 196(2005)
16 J. M. McIntyre, H. Q. Pham,Electrochemical impedance spectroscopy: a tool for coatings optimizations, Progress in Organic Coatings, 27, 201(1996)
17 Y. S. Hao, F. C. Liu, E. H. Han, S. Anjum, G. B. Xu,The mechanism of inhibition by zinc phosphate in an epoxy coating, Corrosion Science, 69, 77(2013)
18 ZHAO Zengyuan,WANG Jia, Progresses in cathodic delamination of organic coatings from metals, Journal of Chinese Society for Corrosion and Protection, 28(2), 2008(116)
18 (赵增元, 王佳, 有机涂层阴极剥离作用研究进展, 中国腐蚀与防护学报, 28(2), 2008(116))
19 A. Leng, H. Streckel, M. Stratmann,The delamination of polymeric coatings from steel, Part 1: Calibration of the Kelvinprobe and basic delamination mechanism, Corrosion Science, 41, 547(1999)
20 CAO Chunan, ZHANG Jianqing,An Introduction to Electrochemical Impedance Spectroscopy (Beijing, Science Press, 2002)p.157
20 (157)
21 S. Haruyama, R. Hirayama,Electrochemical impedance for degraded coated steel having pores, Corrosion, 47, 952(1991)
22 D. A. Worsley, D. Williams, J. S. G. Ling,Mechanistic changes in cut-edge corrosion induced by variation of organic coating porosity, Corrosion Science, 43, 2335(2001)
23 Z. W. Wicks Jr., F. N. Jones, S. P. Pappas, D. A. Wicks, Organic Coatings: Science and Technology, third ed.(New York: Wiley-Interscience, 2007)p.147
24 N. T. Phong, M. H. Gabr, L. H. Anh, V. M. Duc, A. Betti, K. Okubo, B. Chuong, T. Fujii,Improved fracture toughness and fatigue life of carbon fiber reinforced epoxy composite due to incorporation of rubber nanoparticles, Journal of Materials Science, 48, 6039(2013)
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] JI Yaming, YANG Yaru, YAO Yongbo, LI Jiaqian, SHEN Xiaojun, LIU Shuqiang. Synthesis of Carbon Nanosphere-Based Nitrogen-Phosphorus-Sulfur Compound Flame Retardant and Flame Retardancy of CNSs-H-D Reinforced Epoxy Resin[J]. 材料研究学报, 2021, 35(12): 918-924.
[8] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] LEI Xuanwei,ZHOU Shuanbao,HUANG Jihua. Current Status and Development Trend on Weldability of Ultra-high Strength Hull Structure Steel[J]. 材料研究学报, 2020, 34(1): 1-15.
No Suggested Reading articles found!