Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (9): 710-714    DOI: 10.11901/1005.3093.2014.149
Current Issue | Archive | Adv Search |
Preparation of Hierarchically Mesoporous Silicas via Partitioned Cooperative Self-assembly Using Sodium Silicate as Precursor
Nan WU1,Wei WANG2,**(),Hao PAN1,Hongqiang RU2
1. Chemistry Division, Electric Power Research Institute, State Grid Liaoning Electric Power Ltd, Shenyang 110006
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

Nan WU,Wei WANG,Hao PAN,Hongqiang RU. Preparation of Hierarchically Mesoporous Silicas via Partitioned Cooperative Self-assembly Using Sodium Silicate as Precursor. Chinese Journal of Materials Research, 2014, 28(9): 710-714.

Download:  HTML  PDF(3363KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hierarchically mesoporous silicas could be prepared by means of a previously reported partitioned cooperative self-assembly process (PCSA process) using nonionic triblock copolymer surfactant (P123) as template and sodium silicate as silica precursor. It was found that the partitioning conditions play a key role in inducing the formation of hierarchically mesoporous structures. Under suitable partitioning conditions, in terms of the amounts of sodium silicate in two partitioned additions and interval time between them, the PCSA process allows the preparation of hierarchically ordered mesoporous silicas based on cheap sodium silicate via such a simple templating system, without resorting to additives, multiple templates or complicated synthetic conditions. The size of the first series mesopores is around 9 nm, while the second series of large pores possesses broadened pore size distributions ranging from 20 nm to 200 nm. Under certain partitioning conditions (SS6-4h-4.5 and SS3-4h-7.5), hierarchically mesoporous silicas with the first series of ordered mesopores can be prepared.

Key words:  inorganic non-metallic materials      mesoporous      silica      partitioned cooperative self-assembly      sodium silicate     
Received:  01 April 2014     
Fund: *Supported by National Natural Science Foundation of China No.21201030, Major Program of National Natural Science of China No.51032007, Fundamental Research Funds for the Central Universities No.N120410001, and State Grid Liaoning Electric Power Ltd Innovative Fund No.2013YF-4.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.149     OR     https://www.cjmr.org/EN/Y2014/V28/I9/710

Fig.1  N2 adsorption-desorption isotherms of meso-silicas. Inset table shows the corresponding BET surface areas and pore volumes
Fig.2  Pore size distributions of meso-silicas calculated from the adsorption branches shown in Fig.1
Fig.3  SEM images of SS6-4h-4.5(a, b), SS5-4h-5.5 (c), SS4-4h-6.5 (d) and SS3-4h-7.5 (e-f)
Fig.4  TEM image of SS5-4h-5.5
Fig.5  Low-angle XRD patterns of SS6-4h-4.5 (a), SS5-4h-5.5 (b), SS4-4h-6.5 (c) and SS3-4h-7.5 (d)
1 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359(6397), 710(1992)
2 Y. Wan, Y. F. Shi, D. Y. Zhao,Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach, Chemical Communications, 897(2007)
3 Su B, Sanchez C, Yang X. Hierarchically structured porous materials, from nanoscience to catalysis, separation, optics, energy, and life science, Wiley-VCH Verlag GmbH & Co. KGaA, (2012)
4 S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger,Zeolitic materials with hierarchical porous structures, Advanced Materials, 23(22-23), 2602(2011)
5 X.-Y. Yang, A. Léonard, A. Lemaire, G. Tian, B.-L. Su,Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications, Chemical Communications, 47(10), 2763(2011)
6 Y. Wang, F. Caruso,Enzyme encapsulation in nanoporous silica spheres, Chemical Communications, 1528(2004)
7 Y. Wan, D. Y. Zhao,On the controllable soft-templating approach to mesoporous silicates, Chemical Reviews, 107(7), 2821(2007)
8 W. Wang, W. J. Shan, H. Q. Ru,Facile preparation and new formation mechanism of plugged SBA-15 silicas based on cheap sodium silicate, Journal of Materials Chemistry, 21(43), 17433(2011)
9 W. Wang, W. J. Shan, H. Q. Ru, N. Wu,A facile and versatile partitioned cooperative self assembly process to prepare SBA-15s with larger mesopores, high microporosity and tunable particle sizes, Journal of Materials Chemistry, 21(32), 12059(2011)
10 W. Wang, H. Qi, H. B. Long, X. Y. Wang, H. Q. Ru,A simple ternary nonionic templating system for preparation of complex hierarchically meso-mesoporous silicas with 3D interconnected large mesopores, Journal of Materials Chemistry A, 2(15), 5363(2014)
11 S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia,Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants, Science, 269(5288), 1242(1995)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!