Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (1): 59-63    
  研究论文 本期目录 | 过刊浏览 |
燃烧反应超快升温热压制备碳纳米管/氧化铝复合材料
黄利伟; 傅正义; 孟范成; 张金咏
武汉理工大学材料复合新技术国家重点实验室 武汉 430070  
CNTs reinfoced alumina ceramics prepared by hot pressing technology with ultra-fast heating rate based on combustion reaction
HUANG Liwei;  FU Zhengyi;  MENG Fancheng;  ZHANG Jinyong
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070
引用本文:

黄利伟 傅正义 孟范成 张金咏. 燃烧反应超快升温热压制备碳纳米管/氧化铝复合材料[J]. 材料研究学报, 2009, 23(1): 59-63.
, , , , , , , , . CNTs reinfoced alumina ceramics prepared by hot pressing technology with ultra-fast heating rate based on combustion reaction[J]. Chin J Mater Res, 2009, 23(1): 59-63.

全文: PDF(689 KB)  
摘要: 

报道一种制备碳纳米管增强氧化铝基复合材料的新方法,用燃烧反应所产生的热量为热源代替传统烧结炉,在燃烧反应完成的同时施加机械压力来实现快速烧结.当碳纳米管掺量为1%(质量分数)时复合材料的断裂韧性同比提高了50%. 该方法有利于避免碳纳米管的高温破坏,复合材料的增韧作用主要来自于碳纳米管的拔出效应和桥联机制.

关键词 复合材料碳纳米管自蔓延燃烧/快速加压增韧机制力学性能    
Abstract

A novel method for producing carbon nanotubes (CNTs) reinforced alumina ceramics was reported. The reaction heat generated by combustion was utilized as a high temperature source, and great mechanical pressure was applied when the combustion reaction was finished. When adding 1% CNTs, the fracture toughness of the composites increased about 50% compared with the pure alumina ceramics prepared in the same conditions. The results indicate that the sintering method is beneficial to protecting the CNTs from destruction. The toughening mechanisms are mainly CNTs pulled-out and CNTs bridging.

Key wordscarbon nanotubes;self-propagating combustion /Quick Pressing;toughening;pulled-out mechanism;bridging mechanism
收稿日期: 2008-06-11     
ZTFLH: 

TB332

 
基金资助:

国家自然科学基金50772081和教育部项目PCSIRT0644资助.

1 S.Iijima, Helical microtubes of graphitic carbon, Nature, 354, 56(1991)
2 A.Krishnan, E.Dujardin, T.W.Ebbesen, P.N.Yianilos, M.M.Treacy, Youngs modulus of single-walled nanotubes, Phys. Rev. B, 58(20), 14013(1998)
3 Ch.Laurent, A.Peigney, O.Dumortier, A.Rousset, Carbon nanotubes-Fe-alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-Pressed composites, J. Eur. Ceram. Soc., 18(14), 2005(1998)
4 A.Peigney, Ch.Laurent, E.Flahaut, A.Rousset, Carbon nanotubes in novel ceramic matrix nanocomposites, Ceram. Int., 26, 677(2000)
5 E.Flahaut, A.Peigney, Ch.Laurent, Ch.Marlie‘Re, F.Chastel, A.Rousset, Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties, Acta Mater., 48, 3803(2000)
6 G.D.Zhan, J.D.Kuntz, J.Wan, A.K.Mukherhee, Singlewall carbon nanotubes as attractive toughening agents in aluminabased nanocomposites, Nat. Mater., 2, 38(2003)
7 D.T.Jiang, K.Thomson, J.D.Kuntz, J.W.Ager, A.K.Mukherjee, Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite, Scripta Mater., 56(11), 959(2007)
8 A.Peigney, Composite materials Tougher ceramics with nanotubes, Nat. Mater., 2, 15(2003)
9 B.W.Sheldon, W.A.Curtin, Nanoceramic composites: tough to test, Nat. Mater., 3, 505(2004)
10 F.C.Meng, Z.Y.Fu, J.Y Zhang, H.Wang, W.M.Wang, Y.C.Wang, Q.J.Zhang, Rapid densification of nanograined alumina by high temperature and pressure with a very high heating rate, J. Am. Ceram. Soc., 90(4), 1262(2007)
11 G.R.Anstis, P.Chantikul, B.R.Lawn, D.B.Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurement, J. Am. Ceram. Soc, 64, 533(1981)
12 K.E.Thomson, D.T.Jiang, R.O.Ritchie, A.K.Mukherjee, A preservation study of carbon nanotubes in aluminabased nanocomposites via Raman spectroscopy and nuclear magnetic resonance, Appl. Phys. A, 89, 651(2007)
13 F.C.Meng, Z.Y.Fu, J.Y Zhang, H.Wang, W.M.Wang, Y.C.Wang, R.Todd, Q.J.Zhang, Study on the structure and properties of fine-grained alumina fast sintered with high heating rate, Mater. Res. Bull., 43, 3521(2008)
14 T.Wei, Z.J.Fan, G.H.Luo, F.Wei, D.Q.Zhao, J.P.Fan, The effect of carbon nanotubes microstructures on reinforcing properties of SWNTs/alumina composite, Mater. Res. Bull., 43, 2806(2008)
15 M.Estili, A.Kawasaki, An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions, Scripta Mater., 58, 906(2008)
16 J.Sun, L.Gao, X.H.Jin, Reinforcement of alumina matrix with multi-walled carbon nanotubes, Ceram. Int., 31, 893(2005)

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.