Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (1): 54-58    
  研究论文 本期目录 | 过刊浏览 |
球形压痕的凸起凹陷行为及其对硬度测量的影响
崔航; 陈怀宁; 陈静; 黄春玲; 吴昌忠
中国科学院金属研究所 沈阳 110016
Behavior of pile-up and sinking-in around spherical indentation and its effect on hardness determination
CUI Hang;  CHEN Huaining;  CHEN Jing;  HUANG Chunling;  WU Changzhong
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

崔航 陈怀宁 陈静 黄春玲 吴昌忠. 球形压痕的凸起凹陷行为及其对硬度测量的影响[J]. 材料研究学报, 2009, 23(1): 54-58.
, , , , . Behavior of pile-up and sinking-in around spherical indentation and its effect on hardness determination[J]. Chin J Mater Res, 2009, 23(1): 54-58.

全文: PDF(598 KB)  
摘要: 

采用球形压头的数值模拟表明, 当应变硬化指数n大于0.23时, 不论屈服应变σy/E为何值, 在压入过程中所有材料的压痕周围均出现凹陷; 当n小于0.23时, 随着σy/E的增大, 材料由凸起向凹陷转变; 当σy/E大于0.02时, 不论n为何值材料也都出现凹陷; 当σy/E小于0.02时, 材料出现凸起向凹陷的转变. 当比值残余压痕深度/最大压入深度(hf /hmax)小于0.76时, 材料出现凹陷, n值越大凹陷越严重; 当(hf /hmax)}>0.76, 若n<0.23材料出现由凸起向凹陷转变, 若n>0.23材料均发生凹陷. 还得到了反映凸起凹陷的表观参量c2与接触面积Am之间的函数关系, 分析了c2对压痕硬度误差的影响规律.

关键词 材料科学基础学科有限元法压痕的凸起凹陷球形压痕屈服应变硬化指数    
Abstract

By the numerical simulation of spherical indenter, it was observed that for the material with strain hardening exponent n >0.23, sinking-in will happen for all values of yield strain σy/E, but when n <0.23, both pile-up and sinking-in depend on the changing of σy/E. For the material with σy/E >0.02, sinking-in was observed for all values of n during indenting, but when σy/E <0.02, both pile-up and sinkin depend on the changing of n. For the ratio of residual indentation depth and maximum indentation depth (hf /hmax)<0.76, the material shows sinking-in behavior, and the higher strain hardening exponent is, the greater sinking-in is. For hf /hmax>0.76, pile-up changes to sinking-in when n <0.23 and totally sinking-in when n >0.23. The relation between the feature of pile-up or sinking-in c2 and contact area was obtained, and the effect of c2 on error of hardness was analyzed.

Key wordsfoundational discipline in materials science    finite element analysis    pile-up and sinking-in    spherical indentation    yield strain    strain hardening exponent
收稿日期: 2008-06-25     
ZTFLH: 

TG115

 
基金资助:

中俄政府间科技合作资助项目20070634.

1 X.Hernot, O.Bartier, Y.Bekouche, EI.R.Abdi, Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation, International Journal of Solids and Structures, 43, 4136(2006)
2 G.Das, S.Ghosh, S.C.Bose, S.Ghosh, Use of ball indentation technique to evaluate room temperature mechanical properties of a gas turbine blade, Materials Science and Engineering, 424(A), 330(2006)
3 M.Dao, N.Chollacoop, K.J.Van Vliet, T.A.Venkatesh, S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater., 49, 3899(2001)
4 Y.P.Cao, J.Lu, A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve, Acta Materialia, 52, 4023(2004)
5 D.Tabor, The Hardness of Metals (Oxford, University Press, 1951) p.14
6 Y.T.Cheng, C.M.Cheng, What is indentation hardness, Surface and Coatings Technology, 133-134, 417(2000)
7 A.Bolshakov, G.M.Pharr, Influences of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res., 13, 1049(1998)
8 Y.T.Cheng, C.M.Cheng, Scaling approach to conial indentation in elastic-plastic solids with work hardening, J. Appl. Phys., 84, 1284(1998)
9 W.C.Oliver, G.M.Pharr, An Improved technique for determining hardness and elastic modulus using load and displacement indentation experiments, J. Mater. Res., 7(6), 1564(1992)
10 H.L.Lee, J.H.Lee, G.M.Pharr, A numerical approach to spherical indentation techniques for material property evaluation, Journal of the Mechanics and Physics of Solids, 53, 2046(2005)
11 N.W.Chollacoop, Computational and experimental study of instrumented indentation, PhD Thesis, Massachusetts Institute of Technology (2004)
12 J.Alcala, A.C.Barone, M.Anglada, The influence of plastic hardening on surface deformation modes around Vickers and spherical indents, Acta Mater., 48, 3451(2000)

[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 周路海, 韦习成, 王春燕, 鲁军, 王武荣. T10钢的干滑动摩擦学行为与晶粒尺寸的关系[J]. 材料研究学报, 2017, 31(11): 833-838.
[11] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] 娄菊红, 杨延清. 基体性能对复合材料热残余应力的影响*[J]. 材料研究学报, 2016, 30(7): 503-508.
[13] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[14] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[15] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.