Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (1): 1-5    
  研究论文 本期目录 | 过刊浏览 |
析出相对Ti60钛合金蠕变和持久性能的影响
赵亮; 刘建荣; 王清江; 杨锐
中国科学院金属研究所 沈阳 110016
Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy
ZHAO Liang; LIU Jianrong; WANG Qingjiang; YANG Rui
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

赵亮 刘建荣 王清江 杨锐. 析出相对Ti60钛合金蠕变和持久性能的影响[J]. 材料研究学报, 2009, 23(1): 1-5.
. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy[J]. Chin J Mater Res, 2009, 23(1): 1-5.

全文: PDF(721 KB)  
摘要: 

研究了固溶态的Si、硅化物以及α2相对Ti60高温钛合金蠕变和持久性能的影响. 结果表明, α片层之间析出的硅化物能提高Ti60钛合金的600℃蠕变抗力, 且当α片层内部有α2相析出时蠕变抗力提高更明显,但是硅化物的大量析出和大颗粒硅化物的存在却降低了Ti60钛合金的600℃持久性能;α2相的析出同时提高材料的蠕变抗力和持久性能;减少硅化物的析出以提高固溶态的Si对低应力下蠕变抗力的作用不显著,但是能改善高应力下的持久性能.在蠕变和持久实验条件下固溶态的硅和硅化物的不同作用,可通过不同外加应力水平下材料变形机制的差异加以解释.

关键词 金属材料 Ti60 高温钛合金 硅化物 高温蠕变    
Abstract

The influence of Si in solution, silicide and α2 phase on the high temperature creep and creep rupture properties of Ti–60 titanium alloy was investigated. The results show that silicide precipitated between α plates increases the creep resistance at 600 oC, which becomes more pronounced when α2 phase precipitated in the matrix. However, the effect of silicide on the creep rupture property was negative when silicides exist in large size and amount. Precipitation of α2 phase was beneficial both to high temperature creep and creep rupture properties. Increase of silicide in solution by way of lowering the silicide precipitation was more beneficial to creep rupture properties with higher applied stress than to creep properties with lower applied stress. The underlying  mechanism under creep test condition can be rationalized by the different deformation mechanism under different applied stress.

Key wordsmetallic materials    Ti60 alloy    high temperature titanium alloy    silicide    high temperature creep
收稿日期: 2008-03-20     
ZTFLH: 

TG113

 
基金资助:

国家高技术研究发展计划2007AA03A224资助项目.

1 C.Leyens, M.Peters, Titanium and Titanium Alloys, translated by CHEN Zhenhua (Beijing, Chemical Industry Press, 2005) p.22
(C.莱茵斯, M.皮特尔斯, 钛与钛合金,  陈振华译(北京, 化学工业出版社, 2005) p.22)
2 H.W.Rosenberg, Titanium Science and Technology,edited by R.I.Jaffee and H.M.Burte (New York, Plenum Press, 1973) p.2127
3 H.M.Flower, P.R.Swann, D.R.F.West, Silicide precipitation in the Ti–Zr–Al–Si system, Metall. Trans., 2, 3289(1971)
4 W.Cho, J.W.Jones, J.E.Allison, W.T.Donlon, in: Sixth World Conference on Titanium, Vol. 1, edited by P.Lacombe, R.Tricot and G. B´eranger (Les Editions de Physique, Paris, 1988) p.187
5 B.Borcheat, M.A.Daeubler, in: Sixth World Conference on Titanium, edited by P.Lacombe, R.Tricot and G. B´eranger (Les Editions de Physique, Paris, 1988)p.467
6 S.Hardt, H.J.Maier, H.–J.Christ, High–temperature fatigue damage mechanisms in near–α titanium alloy IMI 834, Int. J. Fatigue, 21, 779(1999)
7 T.K.G.Namboodhiri, Jr, C.J.McMahon, H.Herman, Decomposition of the α–phase in titanium–rich Ti–Al alloys, Metall. Trans., 4, 1323(1973)
8 ZHANG Shangzhou, Effect of carbon on microstructure of Ti–60 high–temperature titanium alloy, Ph. D Dissertation, Institute of Metal Research, Chinese Academy of Sciences(2004)
(张尚洲, 碳对Ti--60高温钛合金组织演变的影响, 中国科学院金属研究所博士学位论文(2004))
9 ZHANG Jun, LI Dong, α2 Ordered Phase in High TemperatureTitanium Alloys (Shenyang, Northeastern University Press, 2002) p.20
(张钧, 李东, 高温钛合金中的α2 (沈阳, 东北大学出版社, 2002) p.20)
10 HU Qingmiao, First principles Investigation of the effects of alloying on the mechanical properties of titanium, Ph. D Dissertation, Institute of Metal Research, Chinese Academy of Sciences (2001)
(胡青苗, 合金化对钛合金力学性能影响的第一原理研究, 中国科学院金属研究所博士学位论文(2001))
11 Thomas H. Courtney, Mechanical Behavior of Materials (Beijing, China Machine Press, 2004) p.293
(Thomas H. Courtney著,  材料力学行为  (北京, 机械工业出版社, 2004) p.293)
12 CHEN Zhiyong, Microstructure, mechanical property and deformation behavior of electron beam weldment of titanium alloy Ti–60, Ph. D Dissertation, Institute of Metal Research, Chinese Academy of Sciences (2008)
(陈志勇, 高温钛合金Ti--60电子束焊接接头的显微组织、力学性能与变形行为研究, 中国科学院金属研究所博士学位论文(2008))
13 C.Ramachandra, V.K.Verma, V.Singh, Low cycle fatigue behaviour of titanium alloy 685, Int. J. Fatigue, 10, 21(1988)
14 C.Ramachandra, V.Singh, Effect of silicide precipitation on the low cycle fatigue behaviour of alloy Ti–6Al–5Zr–0.5Mo–0.25Si, Scr. Metall., 21, 633(1987)
15 W.J.Plumbridge, M.Stanley, Low cycle fatigue of a titanium 829 alloy, Int. J. Fatigue, 8, 206(1986)

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.