Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 881-891    DOI: 10.11901/1005.3093.2025.094
  研究论文 本期目录 | 过刊浏览 |
可降解Zn-0.45Mn合金的蠕变机制
孙涛1,2, 唐乐彬2, 朱兴隆2, 杨丽景2(), 张青科2, 宋振纶2
1.宁波大学材料科学与化学工程学院 宁波 315211
2.中国科学院宁波材料技术与工程研究所 海洋关键材料全国重点实验室 宁波 315201
Creep Mechanism of Biodegradable Zn-0.45Mn Alloy in Temperature Range of 37-121 oC
SUN Tao1,2, TANG Lebin2, ZHU Xinglong2, YANG Lijing2(), ZHANG Qingke2, SONG Zhenlun2
1.College of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
2.State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

孙涛, 唐乐彬, 朱兴隆, 杨丽景, 张青科, 宋振纶. 可降解Zn-0.45Mn合金的蠕变机制[J]. 材料研究学报, 2025, 39(12): 881-891.
Tao SUN, Lebin TANG, Xinglong ZHU, Lijing YANG, Qingke ZHANG, Zhenlun SONG. Creep Mechanism of Biodegradable Zn-0.45Mn Alloy in Temperature Range of 37-121 oC[J]. Chinese Journal of Materials Research, 2025, 39(12): 881-891.

全文: PDF(18476 KB)   HTML
摘要: 

用熔铸和热挤压制备 Zn-0.45Mn合金,研究了这种合金在不同温度(37 ℃、51 ℃和121 ℃)和应力范围(40~170 MPa)内的蠕变行为。结果表明,在40 MPa低应力下Zn-0.45Mn合金37 ℃的蠕变应力指数为5.44,51 ℃的应力指数为5.08,121 ℃时的则为4.33。计算结果表明,其表观蠕变激活能为24.1~42.1 kJ/mol;对其显微结构的分析表明,晶界滑移可能是其主要的蠕变机制,尤其是在高温。

关键词 有色金属及其合金锌锰合金蠕变应力指数表观蠕变激活能    
Abstract

Zn-0.45Mn alloy was prepared by melt casting and hot extrusion, and the creep behavior of Zn-0.45Mn alloy was investigated at the temperature range of 37-121 oC and by stress in the range of 40 MPa to 170 MPa. Under the low stress condition of 40 MPa, the creep characteristics of Zn-0.45Mn alloy showed creep stress exponent of 5.44, 5.08, and 4.33, corresponding to test temperature at 37 oC, 51 oC and 121 oC respectively. The apparent creep activation energy was calculated to be 24.1-42.1 kJ/mol. In combination with microstructural analysis, the grain boundary slippage may be the main creep mechanism, especially at high temperatures. The results not only reveal the creep behavior of Zn-0.45Mn alloy, but also provide a scientific basis for expanding their potential in biomedical applications.

Key wordsnon-ferrous metals and their alloys    Zn-Mn alloy    creep    stress exponent    apparent creep activation energy
收稿日期: 2025-03-03     
ZTFLH:  TG146.1  
基金资助:“尖兵领雁+X”研发攻关计划(2024C03078);宁波市国际科技合作项目(2023H022);宁波市青年科技创新领军人才项目(2023QL014)
通讯作者: 杨丽景,研究员,yanglj@nimte.ac.cn,研究方向为医用金属材料
Corresponding author: YANG Lijing, Tel: 15267855738, E-mail: yanglj@nimte.ac.cn
作者简介: 孙 涛,女,2000年生,硕士生
图1  Zn-0.45Mn合金的制备工艺和性能测试流程
SampleElement / %, mass fraction
ZnMn
Zn-0.45MnBal.0.4511
表1  Zn-0.45Mn合金的化学成分
图2  Zn-0.45Mn 合金的XRD谱
图3  Zn-0.45Mn合金在垂直于和平行于挤压方向的微观组织
PointElement / %, mass fraction
Zn KMn K
a99.300.70
b99.910.09
c99.110.89
d100.000.00
e99.730.27
f98.111.89
表2  在垂直和平行于挤压方向不同位置的EDS分析结果
图4  Zn-0.45Mn合金的拉伸应力-应变曲线、拉伸断口宏观形貌以及断口中心的放大图
图5  Zn-0.45Mn 合金在不同温度和应力下的蠕变行为
图6  Zn-0.45Mn合金在应力为70 MPa、温度为37~121 oC的蠕变应变随时间的变化
图7  Zn-0.45Mn 合金在温度为37 ℃、51 ℃和121 ℃以及各种应力蠕变断裂后的断口形貌
图8  Zn-0.45Mn 合金在37 ℃、51 ℃和121 ℃的稳态蠕变速率与应力的关系
图9  Zn-0.45Mn 合金在不同温度的蠕变断裂行为
图10  Zn-0.45Mn 合金在37 ℃、51 ℃和121 ℃的蠕变应力指数n
图11  Zn-0.45Mn合金在不同应力下稳态蠕变速率的对数(lnε˙)与温度的倒数(1000/T)的关系以及不同应力水平下的激活能
图12  Zn-0.45Mn合金在温度为37 ℃、应力为70 MPa条件下蠕变断裂后的纵截面
[1] Huang Q L, Ren Y B, Ma Y H, et al. Research progress on biodegradable zinc-based alloys in orthopedics [J]. Mater. China, 2023, 42(8): 631
[1] 黄庆利, 任伊宾, 马玉豪 等. 可降解锌基合金在骨科领域的研究进展[J]. 中国材料进展, 2023, 42(8): 631
[2] Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25(18): 2577
doi: 10.1002/adma.v25.18
[3] Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53(3): 257
doi: 10.11900/0412.1961.2016.00529
[3] 郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报, 2017, 53(3): 257
doi: 10.11900/0412.1961.2016.00529
[4] Zhu Y H. Creep deformation and microstructural change in extruded Zn-Al based alloy[J]. Met. Mater., 1998, 4: 878
doi: 10.1007/BF03026416
[5] Wang Y P, Wang T B, Yang C X, et al. Effects of microalloy elements on microstructure and properties of Zn-Cu-Ti alloy [J]. Chin. J. Nonferrous Met., 2024, 34(3): 787
[5] 王云鹏, 王同波, 杨春秀 等. 微量合金元素对Zn-Cu-Ti合金显微组织与性能的影响[J]. 中国有色金属学报, 2024, 34(3): 787
[6] Geng Z J, Xiao L R, Cai Z Y, et al. Effect of trace elements Cr and Mg on mechanics and creep properties of Zn-Cu-Ti alloys [J] Min. Metall. Eng., 2012, 32(5): 101
[6] 耿占吉, 肖来荣, 蔡圳阳 等. 微量元素Cr、Mg对Zn-Cu-Ti合金力学和蠕变性能的影响 [J]. 矿冶工程, 2012, 32(5): 101
[7] Quintana M J, García J O, González R, et al. Influence of strain rate and heat treatments on tensile and creep properties of Zn-0.15Cu-0.07Ti alloys [J]. Dyna, 2016, 83(195): 77
doi: 10.15446/dyna.v83n195.44926
[8] Türk A, Durman M, Kayali E S. The effect of manganese on the microstructure and mechanical properties of zinc-aluminium based ZA-8 alloy [J]. J. Mater. Sci., 2007, 42: 8298
doi: 10.1007/s10853-007-1504-2
[9] Muñoz-Andrade J D, Mendoza-Allende A, Cabrera E, et al. Effect of grain size on the activation energy for plastic deformation near room temperature in a Zn-28.7 pct Al-1.9 pct Cu alloy [J]. J. Mater. Sci., 2007, 42: 7617
doi: 10.1007/s10853-007-1751-2
[10] Kallien L H, Leis W. Ageing of zink alloys [J]. Int. Foundry Res., 2011, 63(1): 2
[11] Wu Z C, Sandlöbes S, Wang Y F N, et al. Creep behaviour of eutectic Zn-Al-cu-mg alloys [J]. Mater. Sci. Eng., 2018, 724A: 80
[12] Mostaed E, Sikora-Jasinska M, Ardakani M S, et al. Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting [J]. Acta Biomater., 2020, 105: 319
doi: S1742-7061(20)30043-X pmid: 31982587
[13] Zhuo X R, Wu Y N, Ju J, et al. Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening [J]. J. Mater. Res. Technol., 2022, 17: 244
doi: 10.1016/j.jmrt.2022.01.004
[14] Sun S N, Ren Y P, Wang L Q, et al. Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys [J]. Mater. Sci. Eng., 2017, 701A: 129
[15] Zhu X L, Ren T T, Guo P S, et al. Strengthening mechanism and biocompatibility of degradable Zn-Mn alloy with different Mn content [J]. Mater. Today Commun., 2022, 31: 103639
[16] Guo P S, Ren T T, Liu Y X, et al. Bimodal coarse-grained and unimodal ultrafine-grained biodegradable Zn-0.5 Mn alloy: superplastic mechanism and short-term biocompatibility in vivo [J]. Mater. Today Commun., 2022, 31: 103660
[17] Jarzębska A, Maj Ł, Bieda M, et al. Dynamic recrystallization and its effect on superior plasticity of cold-rolled bioabsorbable zinc-copper alloys [J]. Materials, 2021, 14: 3483
doi: 10.3390/ma14133483
[18] Huang C, Wang Y, Yang F, et al. Additively manufactured biodegradable Zn-Mn-based implants with an unprecedented balance of strength and ductility [J]. Acta Biomater., 2025, 196: 506
doi: 10.1016/j.actbio.2025.02.047
[19] Fan S H, Yue R, Li S, et al. First-principles calculations of diffusion activation energies for designing anti-self-aging biodegradable zinc alloys [J]. J. Mater. Res., 2021, 36(7): 1475
doi: 10.1557/s43578-021-00177-7
[20] Das A, Kumar Chakravartty J. Fractographic correlations with mechanical properties in ferritic martensitic steels [J]. Surf. Topogr.: Metrol. Prop., 2017, 5(4): 045006
[21] Chae D, Koss D A. Damage accumulation and failure of HSLA-100 steel [J]. Mater. Sci. Eng, 2004, 366A(2) : 299
[22] Ashby M F, Dyson B F. Creep damage mechanics and micromechanisms [A]. ValluriSR, TaplinDM R, RaoPR, et al. Fracture 84 [M]. New York: Pergamon Press, 1984: 3
[23] Monkman E C, Grant N J. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests [J]. Proc. ASTM Int., 1956, 56: 593
[24] Michi R A, Toinin J P, Farkoosh A R, et al. Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al-Zr-Er-Si alloy [J]. Acta Mater., 2019, 181: 249
doi: 10.1016/j.actamat.2019.09.055
[25] Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54(4): 485
[25] 苏煜森, 杨银辉, 曹建春 等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54(4): 485
doi: 10.11900/0412.1961.2017.00151
[26] Sheikh-Ali A D. The influence of crystallographic texture on grain boundary sliding during superplastic deformation in Zn–1.1% Al alloy [J]. Mater. Sci. Eng., 2008, 475A(1-2) : 308
[27] Chen X Y, Li Q N, Zhou Y, et al. Creep behavior and creep mechanism of Mg-Gd-Y-Sm-Zr alloy [J]. Vacuum, 2023, 212: 112009
doi: 10.1016/j.vacuum.2023.112009
[28] Kim W J, Chung S W, Chung C S, et al. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures [J]. Acta Mater., 2001, 49(16): 3337
doi: 10.1016/S1359-6454(01)00008-8
[29] Chung S W, Watanabe H, Kim W J, et al. Creep deformation mechanisms in coarse-grained solid solution Mg alloys [J]. Mater. Trans., 2004, 45(4): 1266
doi: 10.2320/matertrans.45.1266
[30] Mordike B L. Creep-resistant magnesium alloys [J]. Mater. Sci. Eng., 2002, 324A(1-2) : 103
[31] Ren L B, Zhao Y R, Li J J, et al. Inhibiting creep in fine-grained Mg-Al alloys through grain boundary stabilization [J]. J. Magnes. Alloy., 2025, 13: 2072
doi: 10.1016/j.jma.2024.04.033
[32] Zhu S M, Wu C C, Li G N, et al. Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications [J]. Mater. Sci. Eng., 2020, 777A: 139082
[33] Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics [M]. Oxford: Pergamon Press, 1982: 1
[34] Wang Y Y, Jia C, Tayebi M, et al. Microstructural evolution during accelerated tensile creep test of ZK60/SiCp composite after KoBo extrusion [J]. Materials, 2022, 15(18): 6428
doi: 10.3390/ma15186428
[35] Huang Y J, Liu C M, Wan Y C, et al. Effect of dislocation-induced aging precipitate bands on creep resistance of Mg-Gd-Y-Zr-Ag alloy [J]. J. Alloy. Compd., 2023, 960: 170633
doi: 10.1016/j.jallcom.2023.170633
[36] Zhen R, Wu Z, Xu H Y, et al. Microstructures and mechanical properties of Mg-13Gd-1Zn alloy [J]. Chin. J. Mater. Res., 2020, 34(3): 225
doi: 10.11901/1005.3093.2019.364
[36] 甄 睿, 吴 震, 许恒源 等. Mg-13Gd-1Zn合金的组织与力学性能 [J]. 材料研究学报, 2020, 34(3): 225
[37] Sha G Y, Xu Y B, Han E H. Microstructure and creep behavior of a cast Mg-RE alloy [J]. Chin. J. Mater. Res., 2003, 17(6): 603
[37] 沙桂英, 徐永波, 韩恩厚. 铸造Mg-RE合金的显微结构及其蠕变行为 [J]. 材料研究学报, 2003, 17(6): 603
[38] Xiao L, Lu W J, Qin J N, et al. Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite [J]. Compos. Sci. Technol., 2009, 69(11-12): 1925
doi: 10.1016/j.compscitech.2009.04.009
[39] Mikhaylovskaya A V, Yakovtseva O A, Mochugovskiy A G, et al. Influence of minor Zn additions on grain boundary anelasticity, grain boundary sliding, and superplasticity of Al-Mg-based alloys [J]. J. Alloy. Compd., 2022, 926: 166785
doi: 10.1016/j.jallcom.2022.166785
[1] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[2] 张浩杰, 林通, 赵杰, 曹铁山, 程从前. 奥氏体耐热钢Sanicro25的高温压痕蠕变行为[J]. 材料研究学报, 2025, 39(12): 945-951.
[3] 崔捷, 李旭东, 杜宪, 李淑波, 杜文博. 轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响[J]. 材料研究学报, 2024, 38(9): 641-650.
[4] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[5] 向钰琳, 杨仁贤, 蔡欣, 胡小强, 李殿中. 稀土CeX20Co马氏体耐热钢蠕变性能的影响[J]. 材料研究学报, 2024, 38(10): 721-731.
[6] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] 张敏, 张思倩, 王栋, 陈立佳. 一种镍基单晶高温合金的蠕变组织损伤对再蠕变行为的影响[J]. 材料研究学报, 2023, 37(6): 417-422.
[8] 吕德超, 曹铁山, 程从前, 周彤彤, 赵杰. 奥氏体耐热钢Sanicro25蠕变行为和断裂特征[J]. 材料研究学报, 2023, 37(11): 846-854.
[9] 梁爽, 刘智鑫, 刘丽荣, 梁金广, 纪良博, 邵华阳. Ru对一种高W镍基单晶合金蠕变性能的影响[J]. 材料研究学报, 2021, 35(9): 694-702.
[10] 席国强, 邱建科, 雷家峰, 马英杰, 杨锐. Ti-6Al-4V合金的室温蠕变行为[J]. 材料研究学报, 2021, 35(12): 881-892.
[11] 俞鑫, 邸彤彤, 沈杭燕. 微乳法制备参数对纳米锡银铜焊粉熔点的影响[J]. 材料研究学报, 2020, 34(4): 299-303.
[12] 甄睿,吴震,许恒源,谈淑咏. Mg-13Gd-1Zn合金的组织与力学性能[J]. 材料研究学报, 2020, 34(3): 225-230.
[13] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[14] 陈显明, 潘清林, 范莹莹. Al-Mg-Sc-Ti合金中Al3(Scx,Ti1-x)粒子的析出行为[J]. 材料研究学报, 2020, 34(10): 737-743.
[15] 王冬颖,王立毅,冯鑫,张滨,雍兴平,张广平. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能[J]. 材料研究学报, 2019, 33(7): 497-504.