Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 737-743    DOI: 10.11901/1005.3093.2020.165
  研究论文 本期目录 | 过刊浏览 |
Al-Mg-Sc-Ti合金中Al3(Scx,Ti1-x)粒子的析出行为
陈显明1(), 潘清林2, 范莹莹1
1.肇庆学院电子与电气工程学院 肇庆 526061
2.中南大学材料科学与工程学院 长沙 410083
Precipitation of Al3(Scx ,Ti1-x) Particles in Al-Mg-Sc-Ti Alloy
CHEN Xianming1(), PAN Qinglin2, FAN Yingying1
1. School of Electronic and Electrical Engineering, Zhaoqing University, Zhaoqing 526061, China
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

陈显明, 潘清林, 范莹莹. Al-Mg-Sc-Ti合金中Al3(Scx,Ti1-x)粒子的析出行为[J]. 材料研究学报, 2020, 34(10): 737-743.
Xianming CHEN, Qinglin PAN, Yingying FAN. Precipitation of Al3(Scx ,Ti1-x) Particles in Al-Mg-Sc-Ti Alloy[J]. Chinese Journal of Materials Research, 2020, 34(10): 737-743.

全文: PDF(11121 KB)   HTML
摘要: 

用激冷铸造法制备Al-5.5Mg-0.25Sc-0.04Ti合金,研究了在不同温度退火后其硬度随时间的变化,并用金相显微镜(OM)和透射电镜(TEM)研究了这种合金中Al3(Scx,Ti1-x)第二相粒子的存在形式和形成机制。结果表明:用急冷铸造法制备的Al-5.5Mg-0.25Sc-0.04Ti铸态合金中Sc和Ti原子主要以固溶的形式存在于α(Al)基体中,在电镜下很难观察到这些粒子。铸态合金在较低温度(低于250℃)下退火时其硬度提高得比较慢,退火较长时间才能出现硬度的峰值;而在比较高的温度(高于350℃)退火硬度提高得非常快,很快出现峰值。但是,硬度出现峰值后继续退火则大幅度降低;在300℃退火硬度的热稳定性比较高。硬度的变化,与次生Al3(Scx,Ti1-x)粒子的析出密切相关。在较低温度下次生Al3(Scx,Ti1-x)粒子的析出不充分且粒径较小,对晶界、亚晶界和位错的钉扎作用较弱;而在过高的温度下Al3(Scx,Ti1-x)粒子发生粗化,使合金的性能降低。

关键词 有色金属及其合金Al-Mg-Sc-Ti合金激冷铸造初生/次生Al3(Scx,Ti1-x)粒子含钪铝合金析出行为    
Abstract

Cast ingot of Al-5.5Mg-0.25Sc-0.04Ti alloy was prepared by chill casting, and of which the hardness change with time at different annealing temperatures was assessed by hard- meter. While the morphology and formation process of the precipitates Al3(Scx,Ti1-x) of the alloy were investigated by means of metallographic microscopy (OM) and transmission electron microscopy (TEM). The results show that Sc and Ti atoms mainly exist as solid-solute in the α-Al matrix when the alloy was made by chill casting, while in such case, precipitates Al3(Scx,Ti1-x) could hardly be observed by electron microscopy. Annealing at lower temperatures (below 250℃) the hardness of as-cast alloy increases slowly, and the hardness peak appears only after a long annealing time. Annealing at higher temperatures (above 350℃) the hardness increases very quickly, and the hardness peak of the alloy appears quickly, but when the hardness peak appears the hardness will decrease greatly as the annealing continues. Among others, the alloy presents the highest thermal stabilitywhen annealing at 300℃. The changes in hardness are closely related to the secondary precipitates of Al3(Scx,Ti1-x). If the annealing temperature is lower, the precipitates of Al3(Scx,Ti1-x) is incomplete and their size is smaller, so the pinning effect on grain boundary, subgrain boundary and dislocation is weaker. But when the annealing temperature is higher, the coarsening of precipitates of Al3(Scx,Ti1-x) will occur, it results in poor alloy properties.

Key wordsNon-ferrous metals and alloys    Al-Mg-Sc-Ti alloy    chill casting    primary/secondary Al3(Scx,Ti1-x) particle    aluminum alloy with scandium    precipitation behavior
收稿日期: 2020-05-18     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(51402258)
AlloyMgScTiAl
Al-Mg-Sc-Ti5.50.250.04Bal.
表1  合金的名义化学成分
图1  铸态和退火后合金试样的金相照片和TEM照片
图2  在不同温度退火后Al-Mg-Sc-Ti合金的硬度曲线
图3  在不同温度退火后Al-Mg-Sc-Ti合金中粒子的TEM照片和能谱
MaterialMelting point/℃Crystal structureLattice constant/nmMismatch/%
Al660FCC0.405
Al3Sc1320Ll20.41031.5
Al3Ti1377D022a=0.3875, c=0.86084.,3
Al3(Ti,Sc)1559Ll20.407010.5
表2  Al3Sc/Al3Ti/Al3(Ti,Sc)和Al的晶格常数[19~21]和错配度
图4  屈服强度增量与析出相颗粒半径的关系
[1] Xu G F, Peng X Y, Duan Y L, et al. Research advance on new Al-Mg-Sc-Zr and Al-Zn-Mg-Sc-Zr alloys [J]. Chin. J. Nonferrous Met., 2016, 26(8): 1577
[1] 徐国富, 彭小燕, 段雨露等. 新型Al-Mg-Sc-Zr和Al-Zn-Mg-Sc-Zr合金的研究进展 [J]. 中国有色金属学报, 2016, 26(8): 1577
[2] Zhou M, Gan P Y, Deng H H, et al. Research status and prospect of Sc microalloying aluminum alloys [J]. Mater. China, 2018, 37(2): 154
[2] 周民, 甘培原, 邓鸿华等. 含钪微合金化铝合金研究现状及发展趋势 [J]. 中国材料进展, 2018, 37(2): 154
[3] Du C H, Yan F, Wang Z T. Aluminum scandium alloy [J]. Light Alloy Fabrication Technol., 2013, 40(8): 11
[3] 杜传慧, 苑飞, 王祝堂. Al-Sc合金 [J]. 轻合金加工技术, 2013, 40(8): 11
[4] Xu P, Jiang F, Meng S, et al. Microstructure and mechanical properties of Al-Mg-Sc-Zr alloy variable polarity plasma arc welding joint [J]. J. Mate. Eng. Perform., 2018, 27(9): 4783
[5] Jiang S Y,Wang R H.Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35(7): 1354
doi: 10.1016/j.jmst.2019.03.011
[6] Liu D Y,Wang J X, Li J F. Microstructures evolution and mechanical properties disparity in 2070 Al-Li alloy with minor Sc addition [J]. Chin. J. Nonferrous Met., 2018, 28(11): 2151
doi: 10.1016/S1003-6326(18)64860-5
[7] Peng Z W, Pan Q L, Cai S, et al. Effect of different aging processes on the corrosion behavior of new Al-Cu-Li-Zr-Sc alloys [J]. Mater. Corros., 2019, 70(12): 2266
[8] Wang H, Huang H, Nie Z R, et al. Process and microstructure of Al-6Mg-0.8Zn-0.5Mn-0.2Zr-0.2Er alloy with high strength and high damage tolerance [J]. Rare Met. Mater. Eng., 2016, 45(6): 1534
[8] 王欢, 黄晖, 聂祚仁等. Al-6Mg-0.8Zn-0.5Mn-0.2Zr-0.2Er合金高强耐损伤工艺与微观组织研究 [J]. 稀有金属材料与工程, 2016, 45(6): 1534
[9] Wu H, Wen S P, Lu J T, et al. Microstructural evolution of new type Al-Zn-Mg-Cu alloy with Er and Zr additions during homogenization [J]. Trans. Nonferrous Met. Soc. China, 2017, 27(7): 1476
doi: 10.1016/S1003-6326(17)60168-7
[10] Feng J, Ye B, Zuo L J, et al. Effects of Zr, Ti and Sc additions on the microstructure and mechanical properties of Al-0.4Cu-0.14Si-0.05Mg-0.2Fe alloys [J]. J. Mater. Sci. Technol., 2018, 34(12): 2316
doi: 10.1016/j.jmst.2018.05.011
[11] Lv F Y, Yang C G, Huang Z B, et al. Study on remelting microstructure and mechanical properties of Al-4Mg-0.15Ti-0.15Sc-0.15Zr alloy [J]. Hot Working Technol., 2017, 46(5): 29
[11] 吕飞阅, 杨成刚, 黄忠宝等. Al-4Mg-0.15Ti-0.15Sc-0.15Zr合金的重熔组织和力学性能研究 [J]. 热加工工艺, 2017, 46(5): 29
[12] Zhou Z Y, Wu B, Zheng X Q, et al. First-principles calculations of ordering behavior and mechanical properties of Al3(Sc0.75M0.25)(M=Ti, Y, Zr and Hf) intermetallics [J]. Rare Met. Mater. Eng., 2019, 48(3): 879
[12] 周泽友, 吴波, 郑小青等. Al3(Sc0.75M0.25)(M=Ti, Y, Zr, Hf)金属间化合物有序化行为和力学性能的第一性原理计算 [J]. 稀有金属材料与工程, 2019, 48(3): 879
[13] Li S L, Pan Q L, Chen X M. Effect of Sc and Ti additions on microstructures and tensile properties of Al - Mg alloys [J]. Ordnance Mater.Sci. Eng., 2003, 26(1): 11
[13] 李绍禄, 潘青林, 陈显明. Sc和Ti复合微合金化对Al-Mg合金组织与性能的影响 [J]. 兵器材料科学与工程, 2003, 26(1): 11
[14] Wang X, Chen G Q, Li B, et al. Effect of minor Sc, Zr and Ti Co-addition on microstructure and properties of Al-Mg alloys [J]. Rare Met. Mater. Eng., 2010, 39(4): 719
[14] 王旭, 陈国钦, 李冰等. 复合添加Sc、Zr、Ti对Al-Mg合金组织与性能的影响 [J]. 稀有金属材料与工程,2010, 39(4): 719
[15] Zeng F h,Xia C Q, Gu Y. An assessment of Al-Mg-Sc-Zr system in aluminum-rich region [J]. Mater. Review, 2002, 16(6): 16
[16] Schuster J C, Palm M. Reassessment of the Binary Aluminum-Titanium Phase Diagram [J]. J. Phase Equilib. Diff., 2006, 27(3): 255
doi: 10.1361/154770306X109809
[17] Du G, Yang W, Yan D S, et al. Precipitation behaviors of primary phases in Al-Mg-Sc-Zr alloy [J]. Chin. J. Nonferrous Met., 2010, 20(6): 1083
[17] 杜刚, 杨文, 闫德胜等.Al-Mg-Sc-Zr 合金中初生相的析出行为 [J]. 中国有色金属学报, 2010, 20(6): 1083
[18] Wang Q, Li Q C, Chang G W. Developing status in quo vadis of quick-solidification [J]. J. Liaoning Instit. 2003, 23(5): 40
[18] 王倩, 李青春, 常国威. 快速凝固技术的发展现状与展望 [J]. 辽宁工学院学报, 2003, 23(5): 40
[19] Hughes D A, Kassner M E, Stout M G, et al. Metal forming at the center of excellence for the synthesis and processing of advanced materials [J]. JOM, 1998, 50(6): 16
[20] He Y, Wang Z P, He Y J. Study on formation of fine crystal layer in TIG weld of Al-Li alloy [J]. J. Mater. Eng., 1995, (12): 3
[20] 贺勇, 王忠平, 贺运佳. 铝锂合金TIG焊缝中细晶层成因的研究 [J]. 材料工程, 1995, (12): 3
[21] Harada Y, Dunand D C. Creep properties of Al3Sc and Al3(Sc,X) intermetallics [J]. Acta Mater., 2000, 48(13): 3477
doi: 10.1016/S1359-6454(00)00142-7
[22] Li Z M, Jiang H C, Wang Y L, et al. The Precipitation and functional mechanism of Al3(Sc, Zr, Ti) phase in 7N01 aluminum alloy with Sc addition [J]. Mater. China, 2019, 38(8): 787
[22] 李召明, 姜海昌, 王昀立等. 含钪7N01铝合金中Al3(Sc, Zr, Ti)相的析出及其作用机制 [J]. 中国材料进展, 2019, 38(8): 787
[1] 郑亚亚, 罗兵辉, 柏振海. 时效早期Al-Mg-Si合金的组织和析出相的演变[J]. 材料研究学报, 2022, 36(12): 926-932.
[2] 俞鑫, 邸彤彤, 沈杭燕. 微乳法制备参数对纳米锡银铜焊粉熔点的影响[J]. 材料研究学报, 2020, 34(4): 299-303.
[3] 李树丰, 今井久志, 近藤胜义, 张鑫, 潘登, 付亚波. 过饱和固溶合金元素在粉末冶金石墨黄铜中的析出强化[J]. 材料研究学报, 2018, 32(11): 843-852.
[4] 宗影影,温道胜,邵斌,单德彬. 0.2% H对Ti2AlNb基合金板材高温拉伸变形行为的影响*[J]. 材料研究学报, 2014, 28(4): 248-254.