Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (9): 641-650    DOI: 10.11901/1005.3093.2023.558
  研究论文 本期目录 | 过刊浏览 |
轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响
崔捷, 李旭东, 杜宪, 李淑波, 杜文博()
北京工业大学材料科学与工程学院 北京 100124
Effect of Rolling Temperature on Microstructure Evolution and Mechanical/Thermal Properties of Mg-4Zn-1Mn-1.2Ce Alloy Sheet
CUI Jie, LI Xudong, DU Xian, LI Shubo, DU Wenbo()
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
引用本文:

崔捷, 李旭东, 杜宪, 李淑波, 杜文博. 轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响[J]. 材料研究学报, 2024, 38(9): 641-650.
Jie CUI, Xudong LI, Xian DU, Shubo LI, Wenbo DU. Effect of Rolling Temperature on Microstructure Evolution and Mechanical/Thermal Properties of Mg-4Zn-1Mn-1.2Ce Alloy Sheet[J]. Chinese Journal of Materials Research, 2024, 38(9): 641-650.

全文: PDF(39892 KB)   HTML
摘要: 

将Mg-4Zn-1Mn-1.2Ce合金铸锭在不同温度轧制成板材,研究了轧制温度对其力学性能和导热性能的影响。结果表明:在轧制过程中,Mg-4Zn-1Mn-1.2Ce合金中的第二相Mg-Zn-Ce相(τ相)和α-Mn相破碎并沿轧制方向分布在基体中。轧制温度低于400℃时,轧制态合金以变形晶粒为主,轧制温度提高到425℃,道次间保温产生的静态再结晶使合金中再结晶的比例提高。轧制温度为375℃时轧制态Mg-4Zn-1Mn-1.2Ce合金的力学性能最优,其抗拉强度、屈服强度及延伸率分别为386 MPa、356 MPa和4.8%,热导率达到127.3 W·(m·K)-1。退火处理使轧制态合金的强度略有降低,但是韧性有较大的改善。375℃轧制的合金经400℃退火60 min后,延伸率由轧制态的4.8%提高到23.5%;与轧制态相比,退火后合金的热导率下降4~9 W·(m·K)-1

关键词 有色金属及其合金镁合金热轧退火力学性能导热性能    
Abstract

The effect of rolling temperature on microstructure evolution and mechanical/thermal properties of Mg-4Zn-1Mn-1.2Ce alloy was investigated. Results indicate that Mg-Zn-Ce (τ phase) second phase and α-Mn were crushed and distributed along the rolling direction in the as hot-rolled Mg-4Zn-1Mn-1.2Ce alloy. When the rolling temperature was lower than 400oC, most grains became deformed grains, but the proportion of recrystallized grains increased due to the occurred static recrystallization during heat preservation in the intervals between rolling-passes when the plate was rolled at 425oC. The tensile strength, yield strength and elongation of the rolled Mg-4Zn-1Mn-1.2Ce alloy sheet were 386 MPa, 356 MPa and 4.8%, respectively, as well as the thermal conductivity of 127.3 W·(m·K)-1 when it was hot-rolled at 375oC. Annealing has resulted in a slight decrease in strength, but a great improvement in toughness. In the case of the alloy rolled at 375oC, its elongation increased from 4.8% to 23.5% after annealed at 400oC/60 min. Also, the thermal conductivity of the annealed alloy decreased about 4~9 W·(m·K)-1 in comparison with that of the as-rolled one.

Key wordsnonferrous metals and alloys    Mg alloy    hot rolling    annealing    mechanical properties    thermal conductivity
收稿日期: 2023-11-22     
ZTFLH:  TG146.2+2  
基金资助:国家重点研发计划(2021YFB3701100)
通讯作者: 杜文博,教授,duwb@bjut.edu.cn,研究方向为镁合金
Corresponding author: DU Wenbo, Tel: (010)67392917, E-mail: duwb@bjut.edu.cn
作者简介: 崔 捷,男,1999年生,硕士生
图1  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金的光学金相组织
图2  轧制温度为350℃的Mg-4Zn-1Mn-1.2Ce合金XRD谱
图3  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金的SEM照片和EDS面扫图
PointMgZnMnCe
A80.5615.270.563.61
B62.122.7818.3216.78
C73.5820.410.595.42
D43.030.8654.052.06
E34.560.8064.320.32
F66.4425.700.906.96
G81.7013.670.554.08
H52.370.6046.930.10
表1  图3中A-H点的EDS分析结果(原子分数,%)
图4  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金的反极图(IPF)和再结晶分布
图5  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金的平均取向差(KAM)分布
图6  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金的晶界分布
T / oCUTS / MPaYS / MPaEL / %α / mm2·s-1λ/ W·(m·K)-1
350369±2348±35.8±0.273.8±1.1129.5±1.9
375384±3356±24.8±0.573.0±0.1127.3±0.2
400368±2335±26.2±0.471.6±0.1127.3±0.2
425325±3212±510.9±1.270.5±0.6123.9±1.0
表2  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金的室温力学性能和导热性能
图7  375℃轧制态Mg-4Zn-1Mn-1.2Ce合金不同退火温度和退火时间的光学金相组织
图8  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金在400℃退火60 min后的光学金相组织
图9  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金在400℃退火60 min后的平均取向差(KAM)分布
T / oCUTS / MPaYS / MPaEL / %α / mm2·s-1λ/ W·(m·K)-1
350305±3164±221.8±0.572.5±0.6125.6±1.0
375328±2175±323.5±0.969.2±0.3118.8±0.5
400307±2162±420.4±0.668.6±0.1120.1±0.2
425264±2139±227.1±0.767.4±0.1117.9±0.2
表3  不同温度轧制的Mg-4Zn-1Mn-1.2Ce合金在400℃退火60 min后的室温力学性能和导热性能
ElementAtomic radius / nmValenceΔR/RMg / %Solubility / atom%[14]
Mg0.160+2--
Zn0.153+2-16.82.40 (598 K)
Mn0.179+2, +4-15.01.00 (923 K)
Ce0.182+313.70.09 (865 K)
表4  Mg-4Zn-1Mn-1.2Ce合金中元素的原子半径、化合价、与镁原子的半径差和在镁中的固溶度
1 Liu Z, Wang Y, Wang Z G, alel. Developing trends of research and application of magnesium alloys [J]. Chin. J. Mater. Res., 2000, 14(5): 449
1 刘 正, 王 越, 王中光 等. 镁基轻质材料的研究与应用 [J]. 材料研究学报, 2000, 14(5): 449
2 Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005
2 陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005
3 Liu Y F, Jia X J, Qiao X G, et al. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys [J]. J. Alloy. Compd., 2019, 806: 71
doi: 10.1016/j.jallcom.2019.07.267
4 Zhang Y X, Kang H H, Nagaumi H, et al. Tracing the microstructures, mechanical properties and thermal conductivity of low-temperature extruded Mg-Mn alloys with various cerium additions [J]. Mater. Charact., 2023, 196: 1
5 Peng J, Zhong L P, Wang Y J, et al. Effect of extrusion temperature on the microstructure and thermal conductivity of Mg-2.0Zn-1.0Mn-0.2Ce alloys [J]. Mater. Des., 2015, 87: 914
6 Tong L B, Zhang J B, Zhang Q X, et al. Effect of warm rolling on the microstructure, texture and mechanical properties of extruded Mg-Zn-Ca-Ce/La alloy [J]. Mater. Charact., 2016, 115: 1
7 Zheng X B, Du W B, Wang Z H, et al. Remarkably enhanced mechanical properties of Mg-8Gd-1Er-0.5Zr alloy on the route of extrusion, rolling and aging [J]. Mater. Lett., 2018, 212: 155
8 Gao L, Yan H, Luo J, et al. Microstructure and mechanical properties of a high ductility Mg-Zn-Mn-Ce magnesium alloy [J]. J. Magnes. Alloy., 2013, 1(4): 283
9 Qi W J, Feng X W, Liu W H B, et al. Microstructure and mechanical properties of rolled- and annealed-Mg-3Zn-2Gd alloy [J]. Chin. J. Mater. Res., 2016, 30(7): 531
9 戚文军, 冯晓伟, 刘汪涵博 等. Mg-3Zn-2Gd合金轧制态和退火态的组织与力学性能 [J]. 材料研究学报, 2016, 30(7): 531
doi: 10.11901/1005.3093.2015.731
10 Huang M L, Li H X, Ding H, et al. Intermetallics and phase relations of Mg-Zn-Ce alloys at 400oC [J]. Trans. Nonferrous Met. Soc. China, 2012, 22(3): 539
11 Huang X S, Suzuki K, Chino Y. Static recrystallization behavior of hot-rolled Mg-Zn-Ce magnesium alloy sheet [J]. J. Alloy. Compd., 2017, 724: 981
12 Eivani A R, Ahmed H, Zhou J, et al. Correlation between electrical resistivity, particle dissolution, precipitation of dispersoids, and recrystallization behavior of AA7020 aluminum alloy [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2009, 40(10): 2435
13 Pan H C, Pan F S, Yang R M, et al. Thermal and electrical conductivity of binary magnesium alloys [J]. J. Mater. Sci., 2014, 49(8): 3107
14 Zhong L P. Research on the thermal conductivity of rare earth magnesium alloys and high thermal conductivity magnesium alloys [D]. Chongqing: Chongqing University, 2016
14 钟丽萍. 稀土镁合金导热性能及高导热镁合金研究 [D]. 重庆: 重庆大学, 2016
15 Zeng X Q, Wang J, Ying T, et al. Research progress in thermal conductivity of magnesium and its alloys [J]. Acta Metall. Sin., 2022, 58(4): 400
15 曾小勤, 王 杰, 应 韬 等. 镁及其合金导热研究进展 [J]. 金属学报, 2022, 58(4): 400
doi: 10.11900/0412.1961.2021.00520
16 Ying T, Chi H, Zheng M Y, et al. Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys [J]. Acta Mater., 2014, 80: 293
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[3] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[4] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[5] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[6] 王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
[7] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[8] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[9] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[10] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[11] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[12] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[13] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[14] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.