材料研究学报, 2025, 39(12): 881-891 DOI: 10.11901/1005.3093.2025.094

研究论文

可降解Zn-0.45Mn合金的蠕变机制

孙涛1,2, 唐乐彬2, 朱兴隆2, 杨丽景,2, 张青科2, 宋振纶2

1.宁波大学材料科学与化学工程学院 宁波 315211

2.中国科学院宁波材料技术与工程研究所 海洋关键材料全国重点实验室 宁波 315201

Creep Mechanism of Biodegradable Zn-0.45Mn Alloy in Temperature Range of 37-121 oC

SUN Tao1,2, TANG Lebin2, ZHU Xinglong2, YANG Lijing,2, ZHANG Qingke2, SONG Zhenlun2

1.College of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

2.State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

通讯作者: 杨丽景,研究员,yanglj@nimte.ac.cn,研究方向为医用金属材料

责任编辑: 黄青

收稿日期: 2025-03-03   修回日期: 2025-06-20  

基金资助: “尖兵领雁+X”研发攻关计划(2024C03078)
宁波市国际科技合作项目(2023H022)
宁波市青年科技创新领军人才项目(2023QL014)

Corresponding authors: YANG Lijing, Tel: 15267855738, E-mail:yanglj@nimte.ac.cn

Received: 2025-03-03   Revised: 2025-06-20  

Fund supported: Key Research and Development Program of Zhejiang Province(2024C03078)
Ningbo International R & D Collaboration Project(2023H022)
Ningbo Youth Science and Technology Innovation Leading Talent Project(2023QL014)

作者简介 About authors

孙 涛,女,2000年生,硕士生

摘要

用熔铸和热挤压制备 Zn-0.45Mn合金,研究了这种合金在不同温度(37 ℃、51 ℃和121 ℃)和应力范围(40~170 MPa)内的蠕变行为。结果表明,在40 MPa低应力下Zn-0.45Mn合金37 ℃的蠕变应力指数为5.44,51 ℃的应力指数为5.08,121 ℃时的则为4.33。计算结果表明,其表观蠕变激活能为24.1~42.1 kJ/mol;对其显微结构的分析表明,晶界滑移可能是其主要的蠕变机制,尤其是在高温。

关键词: 有色金属及其合金; 锌锰合金; 蠕变; 应力指数; 表观蠕变激活能

Abstract

Zn-0.45Mn alloy was prepared by melt casting and hot extrusion, and the creep behavior of Zn-0.45Mn alloy was investigated at the temperature range of 37-121 oC and by stress in the range of 40 MPa to 170 MPa. Under the low stress condition of 40 MPa, the creep characteristics of Zn-0.45Mn alloy showed creep stress exponent of 5.44, 5.08, and 4.33, corresponding to test temperature at 37 oC, 51 oC and 121 oC respectively. The apparent creep activation energy was calculated to be 24.1-42.1 kJ/mol. In combination with microstructural analysis, the grain boundary slippage may be the main creep mechanism, especially at high temperatures. The results not only reveal the creep behavior of Zn-0.45Mn alloy, but also provide a scientific basis for expanding their potential in biomedical applications.

Keywords: non-ferrous metals and their alloys; Zn-Mn alloy; creep; stress exponent; apparent creep activation energy

PDF (18476KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孙涛, 唐乐彬, 朱兴隆, 杨丽景, 张青科, 宋振纶. 可降解Zn-0.45Mn合金的蠕变机制[J]. 材料研究学报, 2025, 39(12): 881-891 DOI:10.11901/1005.3093.2025.094

SUN Tao, TANG Lebin, ZHU Xinglong, YANG Lijing, ZHANG Qingke, SONG Zhenlun. Creep Mechanism of Biodegradable Zn-0.45Mn Alloy in Temperature Range of 37-121 oC[J]. Chinese Journal of Materials Research, 2025, 39(12): 881-891 DOI:10.11901/1005.3093.2025.094

骨科植入物须长时间承受应力才能保持稳定,因此其应该具有足够的强度和持久的机械完整性[1]。锌合金具有合适的拉伸强度及降解速率,可用作骨科植入材料[2,3]。锌较低的熔点(419.5 ℃)使其室温抗蠕变性较差。因此,锌及其合金在长期存储或使用时容易变形。Zn-Al基合金[4]、Zn-Cu-Ti[5,6]、轧制Zn-0.15Cu-0.07Ti合金[7]、铸造Zn-8Al-1Cu-(0.01-0.53)Mn[8]、挤压Zn-28.7Al-1.9Cu合金[9]以及压铸Zn-4Al-(0-3Cu)合金[10]都对蠕变较为敏感。Wu等[11]在25 ℃和105 ℃对ZnAl4Cu1Mg (0.04、0.21和0.31)合金进行单轴拉伸蠕变实验,得到的应力指数为6.9~8.0,蠕变激活能为93~104 kJ/mol,表明其蠕变由位错控制。Kallien和Leis[10]研究了压铸Zn-4Al-(0-3Cu)合金在25~85 ℃的蠕变性能,得到的应力指数为4~5,激活能约为94 kJ/mol。在大多数情况下,自扩散控制的位错蠕变是锌及其合金主要的变形机制。

锰元素是人体必需的元素。锰能使锌的晶粒细化[12],与锌生成的MnZn13相在晶界的钉扎效应可抑制锌的晶粒长大[13]。Sun等[14]和Zhu等[15]的研究表明,随着锰含量的提高,分布在晶界的MnZn13相抑制锌晶粒长大而成为亚晶粒,最终变成超细晶粒。Zn-Mn合金超细晶粒的弱织构可降低力学性能的各向异性,进而提高其塑性和强度。Guo等[16]用多道次热挤压法制备的超塑性Zn-0.5Mn合金具有较高的综合力学性能和体外/体内生物相容性。因此,锰作为合金元素可显著提高医用锌合金的可靠性。本文研究温度和应力对挤压态Zn-0.45Mn 合金蠕变性能的影响及其机理。

1 实验方法

1.1 Zn-0.45Mn合金的制备

用真空感应炉制备Zn-0.45Mn合金,原料为高纯锌(99.99%)和纯锰(99.99%)。将原料表面打磨,并按Zn-0.45Mn (质量分数,%)的比例称量。为避免混入杂质,熔炼前先用纯锌清洗熔炼炉。熔炼时,将炉温升至650~750 ℃加入Mn和80%的纯锌块,待其完全熔化并均匀搅拌后加入其余20%的纯Zn块。继续搅拌使纯锌充分熔化,保温5 min后捞渣。熔炼时用氩气保护。

使用直径为60 mm的钢模具浇注。先将模具预热至240 ℃,然后将温度为580~620 ℃的金属熔液浇注到模具内,在空气中冷却凝固得到圆柱形铸锭。用机械切削切除铸锭的前端和尾部,除去外皮使其直径为50 mm。将铸锭棒加热至220 ℃,以20∶1的挤压比和0.4 mm/s的速度挤压成直径为11 mm的挤压态Zn-0.45Mn合金。

1.2 合金成分的测试和表征

用电感耦合等离子体发射光谱仪(ICP-OES,Perkin-Elmer Optima 2100)测定合金的成分(质量分数)。将0.2 g的合金粉末溶于6 mL浓盐酸中,置于120 ℃的电板上加热使合金粉末完全溶解,然后使其冷却并加去离子水定容至100 mL、摇匀后与标准液比较以测出其成分。

用X射线衍射仪(XRD, D8 Advance Davinci)测定锌合金的XRD谱。采用射线源为Cu 靶,扫描范围 10°~90°,扫描速度为0.3 (°)/s,扫描步长为0.02°。使用MDI Jade 6.5软件分析数据以确定合金的物相组成。

将样品按垂直于挤压方向和平行于挤压方向(ED)切割,逐级打磨抛光后用超声波清洗5 min,烘干后用金相腐蚀液(铬酸)腐蚀约25 s,用金相显微镜(OM,NMM-800RF)和扫描电子显微镜(SEM,FEI Quanta FEG 250)以及扫描电镜自带的背散射电子(BSE)和能谱仪(EDS)表征其微观结构。

1.3 力学性能和蠕变性能的测试

用电子万能实验机(MTS-100 kN)测试合金样品的力学性能。根据ISO 6892-1标准准备长度为11 mm的挤压态样品,并将其加工成标距长度为30 mm、直径为4 mm的拉伸试样。实验在室温下进行,设定十字头速度为1 mm/min。测试每一种试样的三个平行样品,取其结果的平均值。用SEM观察拉伸断口的形貌和微观结构。对比不同样品的断裂模式以分析合金的韧性断裂与脆性断裂。

从挤出的坯料中截取并加工成蠕变测试用样品。将样品表面打磨至光滑,然后用2.5 μm的二氧化硅抛光液手动抛光。根据合金的屈服强度设定蠕变实验的应力,分别为0.2、0.3、0.4、0.5、0.6和0.8 Rp0.2。根据应力-应变曲线确定屈服强度(Rp0.2)为0.2%塑性应变偏移所对应的应力。在机械式持久蠕变实验机(GNCJ-20)上进行恒载荷拉伸蠕变实验,用精度为1 μm的微位移传感器测量蠕变变形。

使用保温套将空气温度的变化控制在± 2 ℃以内,分别在37 ℃、51 ℃和121 ℃进行蠕变实验。蠕变实验至试样失效或在1000 h中断。用SEM表征蠕变实验前后合金样品的微观结构。Zn-0.45Mn合金的制备和力学性能测试的示意图如图1所示。

图1

图1   Zn-0.45Mn合金的制备工艺和性能测试流程

Fig.1   Experimental process flow for preparation and property testing of Zn -0.45Mn alloy


2 实验结果

2.1 Zn-0.45Mn合金的物相和微观组织

用ICP-OES测得的挤压态Zn-0.45Mn合金的实际成分列于表1,测试结果与设计成分基本一致。

表1   Zn-0.45Mn合金的化学成分

Table 1  Chemical composition of Zn-0.45Mn alloy

SampleElement / %, mass fraction
ZnMn
Zn-0.45MnBal.0.4511

新窗口打开| 下载CSV


图2给出了Zn-0.45Mn合金的XRD谱。可以看出,这种合金由主相Zn和第二相MnZn13 相组成。图3给出了挤压态Zn-0.45Mn合金在垂直和平行于挤压方向的微观组织形貌,图3ae分别给出了观察部位的示意图。可以看出,在这两个方向上,合金晶粒的特征不同:垂直于挤压方向的晶粒较为均匀,而平行于挤压方向的晶粒细化有明显的方向性,且部分晶粒较大而具有流变织构。这一组织特征,是由挤压过程中发生动态再结晶和塑性变形诱导的晶粒取向变化所致[17]。从低倍和高倍SEM照片(图3c~dg~h)可见,晶界清晰且有第二相颗粒,合金具有两种结构:白色颗粒或短棒状、块状结构。其中白色颗粒或短棒状(图3acef点所示)位于晶粒内部。用EDS分析合金的成分,结果列于表2图3acef点由Zn和Mn元素组成,属于MnZn13相。块状结构(图3bd点)由Zn组成,因Zn耐腐蚀位于显微图像中较明亮的区域。

图2

图2   Zn-0.45Mn 合金的XRD谱

Fig.2   XRD characterization of Zn-0.45Mn alloy


图3

图3   Zn-0.45Mn合金在垂直于和平行于挤压方向的微观组织

Fig.3   Microstructure of Zn-0.45Mn alloy in the perpendicular and parallel to the extrusion direction (a, e) Schematic of the observation locations, (b, f) Optical micrographs of Zn-0.45Mn alloy perpendicular to and parallel to the extrusion direction, with ED indicating the extrusion direction, (c) SEM image perpendicular to the extrusion direction, (d) High magnification image of the green box area in (c), (c'-d') BSE images of (c-d), (g) SEM image parallel to the extrusion direction, (h) High magnification image of the yellow box area in (g), (g'-h') BSE images of (g-h)


表2   在垂直和平行于挤压方向不同位置的EDS分析结果

Table 2  EDS analysis results at different positions perpendicular to and parallel to the extrusion direction

PointElement / %, mass fraction
Zn KMn K
a99.300.70
b99.910.09
c99.110.89
d100.000.00
e99.730.27
f98.111.89

新窗口打开| 下载CSV


BSE图像(图3c'~d'g'~h')表明,第二相MnZn13(黑色箭头所示)主要以小颗粒状或短棒状形式分布在晶粒内部[16,18]。根据对比度可分辨出晶界轮廓。这种分布特征表明,第二相MnZn13在动态再结晶过程中倾向于在晶粒内部析出,而晶界区域则以Zn基体为主。

这些结果与本文样品的数据相符,确认了Zn-0.45Mn合金中不同相的分布特征。这种分布方式显著影响合金的力学性能,尤其对强度和硬度的影响更大。已有研究表明,Zn基体中Mn元素的适量溶解能提高合金的高温稳定性,且添加扩散活化能(186.12 kJ/mol)较高的Mn可提高合金的抗蠕变性能[8,19]。在ZA-8(Zn-Al-Cu-Mg)合金中添加Mn元素,其稳态蠕变速率随Mn含量的提高而降低,且达到1%应变的时间显著延长,证实Mn是提高合金抗蠕变性能的重要元素[8]。本文实验用Zn-0.45Mn合金的MnZn13相在晶粒内部的稳定分布,可能在一定程度上有类似的作用。强化基体、抑制晶界滑移和位错攀移,可提高合金的高温服役能力和蠕变抗性。

2.2 Zn-0.45Mn 合金的室温拉伸性能

图4a给出了Zn-0.45Mn合金的拉伸应力-应变曲线。根据三组平行样品结果的平均值,计算出这种合金的屈服强度为207.1 MPa,抗拉强度为229.3 MPa,断裂伸长率为27.5%。

图4

图4   Zn-0.45Mn合金的拉伸应力-应变曲线、拉伸断口宏观形貌以及断口中心的放大图

Fig.4   Tensile stress-strain curve (a), macroscopic morphology of tensile fracture (b) and an enlarged view of the center of the fracture in Fig.4b (c)


图4bc给出了这种合金在室温下进行1 mm/min拉伸实验后的SEM断口。可以看出,这种合金在断裂过程中出现了明显的颈缩。在高倍显微镜下可观察到断口中的大量韧窝,表明这种合金的韧性断裂特性。

2.3 在不同温度下的蠕变行为

拉伸实验结果表明,Zn-0.45Mn合金的屈服强度为207.1 MPa。蠕变实验选择40、70、100、120、140和170 MPa蠕变应力,以模拟合金在不同负荷下的应力响应。

图5给出了Zn-0.45Mn合金在37 ℃、51 ℃和121 ℃的蠕变实验结果。图5a给出了室温应力为100~170 MPa的蠕变行为。可以看出,图5中的曲线均呈现出典型的三阶段蠕变特征:初期蠕变阶段(Ⅰ)、稳态蠕变阶段(Ⅱ)和终期蠕变阶段(Ⅲ)。在初期阶段,蠕变速率逐渐降低,反映出这种合金对恒定应力的适应能力;而在稳态阶段,蠕变速率相对稳定,显示出合金的耐久性;在终期阶段,蠕变速率提高直至样品断裂。

图5

图5   Zn-0.45Mn 合金在不同温度和应力下的蠕变行为

Fig.5   Creep curves at room temperature (a) and at 37-121 oC (b-d) under various stresses


图6给出了Zn-0.45Mn合金在应力为70 MPa、温度为37 ℃~121 ℃的蠕变应变随时间的变化。从图6可见,在应力为70 MPa、温度为37 ℃和51 ℃条件下Zn-0.45Mn合金在100 h内没有断裂,表明其在较低应力下的耐久性优异。而在较高的应力下,蠕变曲线出现明显的加速阶段。实验结果表明,随着温度的提高和应力的增大,Zn-0.45Mn合金的稳态蠕变阶段持续时间缩短。这表明,环境条件显著影响合金的蠕变抗力,温度的提高和应力的增大加速了蠕变损伤的发生。同时,在不同温度和应力下合金的微观结构也发生变化而影响其机械性能。

图6

图6   Zn-0.45Mn合金在应力为70 MPa、温度为37~121 oC的蠕变应变随时间的变化

Fig.6   Creep strain versus time curves of Zn-0.45Mn alloy at 70 MPa, 37-121 oC, showing the initial creep stage (Ⅰ), steady state creep stage (Ⅱ) and final creep stage (Ⅲ)


2.4 蠕变断口

图7给出了Zn-0.45Mn 合金的断口形貌。在不同温度和应力下断口形貌的显著不同,揭示了材料蠕变行为的特性。所有样品的断裂位置都分布在标距内。温度为37 ℃和51 ℃时,合金在40 MPa应力下1000 h未断裂。应力提高到70 MPa,断口出现颈缩并伴随大量等轴韧窝和撕裂棱,表现出明显的塑性变形特征。随着应力由70 MPa增大到170 MPa断口形貌逐渐发生变化,颈缩效应减弱和蠕变损伤集中,断口出现大量分布不均匀的蠕变空洞和裂纹扩展。出现颈缩和断裂后,称为“原纤维”的空腔之间的区域导致空洞聚结和裂纹扩展[20]

图7

图7   Zn-0.45Mn 合金在温度为37 ℃、51 ℃和121 ℃以及各种应力蠕变断裂后的断口形貌

Fig.7   Fracture morphologies of Zn-0.45Mn alloy after creep rupture under various stresses at 37 oC, 51 oC, and 121 oC (No rupture occurred after 1000 h of creep at 37 oC and 51 oC under 40 MPa)


温度也显著影响Zn-0.45Mn合金的蠕变断裂行为。温度为37 ℃,断裂前期的变形主要受韧窝主导。随着实验温度提高到51 ℃,蠕变损伤加剧、微空洞的形核、长大及聚结更加明显。在121 ℃高温条件下样品的平均韧窝直径增大、韧窝数量密度降低和撕裂棱的形貌范围缩小。这些现象表明,较高的温度加速了空洞的扩展,使合金样品较早进入终期蠕变阶段直至断裂。蠕变温度和施加的应力促进了微空隙的长大,使蠕变裂纹沿晶界扩展,最终形成韧窝断裂模式[21]

实验结果表明,Zn-0.45Mn合金在37 ℃和51 ℃的抗蠕变性能良好,而在121 ℃和高应力下呈现脆性断裂特征。

3 讨论

3.1 蠕变行为

可用Ashby和Dyson[22]提出的蠕变损伤容限参数λ量化蠕变损伤机制,λ=εrtrε˙(εr为断裂应变,ε˙为稳态蠕变速率,tr是断裂时间)描述材料对局部应变集中的容限,并提供导致三级蠕变和最终断裂的潜在损伤机制。不同的λ值对应不同的损伤和断裂机制。λ为1~2.5的材料,其晶间空穴的形成以及随之产生的脆性晶间断裂是三级蠕变的主要原因。相反,λ > 2.5的材料三级蠕变主要由颈缩引发的机械不稳定性主导;而λ > 5的材料,其中沉淀物颗粒的粗化或位错亚结构的恢复导致显微组织退化,韧性穿晶断裂(即韧窝断裂)成为主要的断裂模式。实验测出Zn-0.45Mn合金的λ值为2~3,表明其主要损伤机制是晶间空穴和颈缩。实验发现,这种合金在蠕变过程中出现了大量晶界空穴(图7),表明局部应力集中导致的空穴扩展和晶界滑动主导了断裂过程。

同时,在稳态阶段,材料的蠕变速率(ε˙)较为恒定,是评估材料抗蠕变性能的关键依据。研究稳态蠕变速率与施加应力之间的关系,可推测材料的蠕变机制。本文对图5中曲线的稳态蠕变段数据进行线性拟合,其斜率即为稳态蠕变速率ε˙图8给出了Zn-0.45Mn合金在不同温度的稳态蠕变速率随应力变化的拟合结果。结果表明,在温度为37 ℃、应力从40 MPa增大到170 MPa稳态蠕变速率从1.2 × 10-8 s-1急剧提高到3.8 × 10-5 s-1。此类行为与位错滑移和再激活机制的增强有关,即材料的局部区域达到屈服状态后晶界滑动和空洞扩展加剧而使蠕变加速。这一结果表明,材料的蠕变行为对施加的应力极为敏感。

图8

图8   Zn-0.45Mn 合金在37 ℃、51 ℃和121 ℃的稳态蠕变速率与应力的关系

Fig.8   Relationship between the steady-state creep rate and applied stress for Zn-0.45Mn alloy at 37 oC, 51 oC, and 121 oC


3.2 温度对蠕变的影响

不同温度下的蠕变行为呈现显著的温度依赖性。实验数据表明,在应力相同的条件下随着温度从37 ℃提高到121 ℃,Zn-0.45Mn合金的稳态蠕变速率显著提高(图9),表明温度的提高加速了材料内部的扩散。

图9

图9   Zn-0.45Mn 合金在不同温度的蠕变断裂行为

Fig.9   Creep fracture behavior at different temperatures (a) relationship between fracture time and applied stress, (b) relationship between fracture time and minimum creep rate


可用Monkman-Grant方程ε˙tr=C描述合金的稳态蠕变速率与断裂时间的关系,其中C为材料的相关常数[23]。从图9b可见,在高温和高应力条件下合金样品的断裂时间显著缩短,表明是晶界滑动和微孔洞聚集共同作用的结果。特别是在温度为121 ℃和高应力条件下,这种复杂的损伤机制使材料的使用寿命显著缩短,使其在高温高负荷条件下的应用受到限制。

3.3 蠕变机制

Zn-0.45Mn合金的蠕变行为和断裂性能,显著依赖温度和应力。实验结果表明,随着温度的提高和应力的增大,合金的蠕变速率迅速提高和断裂时间显著缩短,表明其在高温高应力条件下抗蠕变性能的明显劣化。蠕变是一种典型的热激活过程,温度达到特定阈值时合金的滑移机制可能转变,显著加速蠕变应变和提高稳态蠕变速率。

合金材料的稳态蠕变速率与外加应力和温度的关系可以用蠕变本构方程

ε˙=Aσnexp -QR T

定量描述。式中A为材料常数;σ为外加蠕变应力;n为蠕变应力指数,用以衡量稳态蠕变速率对蠕变应力的敏感性,表征材料的蠕变变形机制;R为气体常数;T为绝对温度;Q为表观蠕变激活能,决定位错运动的难易程度进而决定材料的变形性能,能辅助判断蠕变变形机制[24, 25]

在蠕变过程中温度不变时, 式(1)可简化为

ε˙=Aσn

将其微分可得应力指数n

n=lnε˙lnσT

对不同温度下Zn-0.45Mn合金的lnε˙lnσ关系曲线的斜率进行拟合,可得不同温度下的应力指数(图10)。

图10

图10   Zn-0.45Mn 合金在37 ℃、51 ℃和121 ℃的蠕变应力指数n

Fig.10   Creep stress exponent n at 37 oC, 51 oC, and 121 oC


蠕变机制,有位错运动、晶界滑动和扩散。在较高的温度下,晶界滑动是主要的蠕变机制[26]。蠕变变形机制也可用蠕变应力指数n值评估。蠕变应力指数n < 1蠕变机制为扩散蠕变,其中蠕变过程主要受晶体中原子的扩散速率控制,且多发生在较低应力下;n ≥ 2,蠕变过程主要由晶界滑移控制;n ≥ 3,主要蠕变机制为位错滑移;n = 4~6,蠕变过程主要由空位扩散引起的位错攀移主导;n > 6,幂律蠕变定律失效,稳态蠕变速率由非基底位错运动和孪晶控制[26~30]

在高温和高应力条件下,传统金属材料,如镁合金,具有较高的蠕变激活能和应力指数,符合幂律蠕变规律[27,31]。但是,对于锌合金(Zn-0.45Mn合金),温度升高时其蠕变应力指数并不随之显著增大。温度为37 ℃和51 ℃时Zn-0.45Mn合金的应力指数分别为5.44和5.08,表明位错攀移为主导的蠕变机制;而温度为121 ℃时n值降至4.33,表明高温对位错攀移机制的抑制。这些应力指数的变化表明,在不同温度下Zn-0.45Mn合金的蠕变机制可能从位错攀移向晶界滑动转变。

蠕变应力不变时,进行公式变换可得不同应力下稳态蠕变速率的对数与温度的倒数关系(图11a),根据其斜率可计算出蠕变激活能

Q=-Rlnε˙1000Tn

图11

图11   Zn-0.45Mn合金在不同应力下稳态蠕变速率的对数(lnε˙)与温度的倒数(1000/T)的关系以及不同应力水平下的激活能

Fig.11   Logarithm of steady state creep rate (lnε˙) versus the reciprocal of temperature (1000/T) under different stress levels (a), activation energy under different stress levels (b)


从而计算出Zn-0.45Mn合金在不同应力水平下的表观蠕变激活能(图11b)。温度为37~121 ℃时Zn-0.45Mn合金的蠕变表观激活能为24.1~42.1 kJ/mol,均低于Zn的晶格自扩散的值(92 kJ/mol[32]);也均低于Zn的晶界扩散的值(61 kJ/mol[33])。

ZnAl4Cu1Mg合金在温度为25 ℃和105 ℃的应力指数和蠕变激活能较高。其应力指数为6.9~8,蠕变激活能为93~104 kJ/mol,与Zn的自扩散激活能(92 kJ/mol)接近[11]。在较低温度区间,Zn-0.3Li和Zn-0.4Li合金[32](23~51 ℃)的蠕变应力指数较低(n ≈ 2.3),激活能为80 kJ/mol,表明晶界滑移可能是其主要的蠕变机制。与其相比,镁合金的蠕变激活能较高,其蠕变变形受到位错攀移与晶界滑移的协同控制[34]。温度为175~225 ℃时,Mg-8.9Gd-1.8Y-0.5Zr-0.2Ag合金[35]的蠕变激活能为95.9 kJ/mol和99.5 kJ/mol,均低于Mg的自扩散激活能(135 kJ/mol),表明蠕变主要由扩散控制的晶界滑移(GBS)主导;当温度提高到225~275 ℃蠕变激活能随之提高到 237.7 kJ/mol和246.3 kJ/mol,对于其它镁合金,其蠕变激活能的升高与沉淀硬化合金的结构变化(如析出或析出相粗化)相关[36,37]

已有文献报道,Zn-0.45Mn合金的蠕变行为与Mg和其它Zn合金不同。Zn-0.45Mn合金的应力指数范围较大,而表观蠕变激活能则较低,甚至低于Zn的晶界扩散激活能(61 kJ/mol)。这表明,这种合金的蠕变机制更倾向于晶界滑移控制,而非位错主导的变形模式。此外,在高温和高应力条件下晶界滑移起关键作用。晶界滑动是蠕变和超塑性变形的主要机制[38,39]

与晶内位错滑移相比,晶界滑动可能引发局部应力集中,进而加剧微观损伤的累积并促进裂纹扩展。显微观察表明,晶界滑动与位错滑移、晶界迁移和扩散等机制相互作用,共同主导蠕变变形。特别是在高温高应力条件下,晶界滑动的可能性显著提高,从而提高了Zn-0.45Mn合金的蠕变速率。除了晶界滑动,位错攀移也可能是Zn-0.45Mn合金蠕变的重要机制。位错攀移受空位扩散驱动而在晶界区域引发应力松弛,加快了材料的蠕变变形。应力指数的实验结果证实,在高温高应力条件下位错攀移可能占主导,空位扩散使蠕变变形显著加剧。

为了验证蠕变机制的主导作用,用SEM观察了Zn-0.45Mn合金在37 ℃、70 MPa应力条件下蠕变断裂样品的微观结构(图12)。结果表明,裂纹扩展表现出明显的区域依赖性:在靠近断口的区域(如颈缩区域,距断口最远端0.16 mm处),晶界滑移和裂纹分叉更明显;而在距离断口较远的区域(距断口最远端2.36 mm处),微观形貌趋于平整,晶界滑移和裂纹扩展减弱。这种区域依赖性表明,随着应力集中效应的减弱,晶界滑动的主导作用降低,进一步证实了晶界滑动在蠕变断裂过程中的关键作用。

图12

图12   Zn-0.45Mn合金在温度为37 ℃、应力为70 MPa条件下蠕变断裂后的纵截面

Fig.12   Longitudinal section of Zn-0.45Mn alloy after creep rupture at 70 MPa and 37 oC


根据Zn-0.45Mn合金的微观组织,其蠕变行为在很大程度上受到显微结构的影响。在晶粒细化过程中粗大晶粒因剧烈塑性变形逐渐破碎,而第二相 MnZn13的均匀分布和晶界钉扎抑制了晶界迁移,从而延缓了蠕变。这种钉扎效应在高温高应力条件下尤为重要,不仅提高了抗蠕变性能还显著影响了蠕变变形模式。同时,晶界滑动和位错滑移、晶界迁移以及扩散相互作用,共同影响了材料的整体蠕变机制。这些显微结构的变化为蠕变断裂行为的理论模型提供了重要支持,揭示了晶界滑动在高温高应力条件下对Zn-0.45Mn合金蠕变变形的主导作用。

4 结论

(1) 在较低的温度即使应力低至屈服强度0.2倍,Zn-0.45Mn合金也发生显著的蠕变变形。Zn-0.45Mn合金的最终断裂模式为韧性断裂。

(2) 随着蠕变应力的增大Zn-0.45Mn合金的蠕变速率和总变形程度显著提高,表明应力是主导其蠕变行为的重要因素,而温度的影响较小。

(3) 在低应力条件下Zn-0.45Mn合金的表观蠕变激活能与Zn的晶界扩散激活能接近,蠕变机制更倾向于晶界滑移。

参考文献

Huang Q L, Ren Y B, Ma Y H, et al.

Research progress on biodegradable zinc-based alloys in orthopedics

[J]. Mater. China, 2023, 42(8): 631

[本文引用: 1]

黄庆利, 任伊宾, 马玉豪 .

可降解锌基合金在骨科领域的研究进展

[J]. 中国材料进展, 2023, 42(8): 631

[本文引用: 1]

Bowen P K, Drelich J, Goldman J.

Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents

[J]. Adv. Mater., 2013, 25(18): 2577

DOI      URL     [本文引用: 1]

Zheng Y F, Wu Y H.

Revolutionizing metallic biomaterials

[J]. Acta Metall. Sin., 2017, 53(3): 257

DOI      [本文引用: 1]

Entering 21st century, the metallic biomaterials are revolutionizing. New kinds of metallic biomaterials represented by biodegradable metals, nacocrystalline metals and alloys, and bulk metallic glasses, had been explored as implantable biomaterials, and correspondingly the nature of metallic biomaterials are shifting from the bio-inert (with stainless steel, Co-based alloys and Ti alloys) to bio-active and multi-biofunctional (anti-bacterial, anti-proliferation, anti-cancer, etc.). The newly-emerging 3D printing technology and thin film technology had been applied to the advancing manufacture and intelligence of the medical devices made of metallic biomaterials. In this paper, the current research status of the revolutionizing metallic biomaterials had been reviewed, and the future research and development tendencies for newly-developed metallic biomaterials towards bio-functionalization, composite and intelligence are also proposed.

郑玉峰, 吴远浩.

处在变革中的医用金属材料

[J]. 金属学报, 2017, 53(3): 257

DOI      [本文引用: 1]

进入21世纪,医用金属材料正在发生变革。以可降解金属、纳米晶金属、大块非晶合金为代表的新型医用金属材料被尝试作为植入材料,材料属性正在从生物惰性向生物活性和生物功能化(抗菌、抗增生、抗肿瘤)方向发展,同时3D打印技术和薄膜技术也在被尝试用于金属植入器械的先进制造以及智能化。本文综合评述了处于变革中的医用金属材料研究现状,展望了新型医用金属材料功能化、复合化、智能化的未来发展趋势。

Zhu Y H.

Creep deformation and microstructural change in extruded Zn-Al based alloy

[J]. Met. Mater., 1998, 4: 878

DOI      URL     [本文引用: 1]

Wang Y P, Wang T B, Yang C X, et al.

Effects of microalloy elements on microstructure and properties of Zn-Cu-Ti alloy

[J]. Chin. J. Nonferrous Met., 2024, 34(3): 787

[本文引用: 1]

王云鹏, 王同波, 杨春秀 .

微量合金元素对Zn-Cu-Ti合金显微组织与性能的影响

[J]. 中国有色金属学报, 2024, 34(3): 787

[本文引用: 1]

Geng Z J, Xiao L R, Cai Z Y, et al.

Effect of trace elements Cr and Mg on mechanics and creep properties of Zn-Cu-Ti alloys

[J] Min. Metall. Eng., 2012, 32(5): 101

[本文引用: 1]

耿占吉, 肖来荣, 蔡圳阳 .

微量元素Cr、Mg对Zn-Cu-Ti合金力学和蠕变性能的影响

[J]. 矿冶工程, 2012, 32(5): 101

[本文引用: 1]

采用熔铸、挤压的方法制备了添加Cr、Mg等微量元素的Zn-Cu-Ti系合金, 通过蠕变试验测定了合金的拉伸蠕变性能, 借助SEM、EDS等手段对合金蠕变前后显微组织进行了观察和分析。结果表明: 添加微量元素可降低Zn-Cu-Ti合金常温蠕变速率, 提高合金蠕变抗力。其中添加了Cr元素的Zn-Cu-Ti合金抗拉强度、蠕变性能都有一定的提高;添加了微量元素Mg的Zn-Cu-Ti合金抗拉强度有一定提高, 其蠕变抗力有大幅度提高。Zn-Cu-Ti系合金的常温蠕变机制为位错在晶内的滑移机制, 固溶强化和晶界处的第二相颗粒能提高合金的抗蠕变性能。

Quintana M J, García J O, González R, et al.

Influence of strain rate and heat treatments on tensile and creep properties of Zn-0.15Cu-0.07Ti alloys

[J]. Dyna, 2016, 83(195): 77

DOI      URL     [本文引用: 1]

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.

Türk A, Durman M, Kayali E S.

The effect of manganese on the microstructure and mechanical properties of zinc-aluminium based ZA-8 alloy

[J]. J. Mater. Sci., 2007, 42: 8298

DOI      URL     [本文引用: 3]

Muñoz-Andrade J D, Mendoza-Allende A, Cabrera E, et al.

Effect of grain size on the activation energy for plastic deformation near room temperature in a Zn-28.7 pct Al-1.9 pct Cu alloy

[J]. J. Mater. Sci., 2007, 42: 7617

DOI      URL     [本文引用: 1]

Kallien L H, Leis W.

Ageing of zink alloys

[J]. Int. Foundry Res., 2011, 63(1): 2

[本文引用: 2]

Wu Z C, Sandlöbes S, Wang Y F N, et al.

Creep behaviour of eutectic Zn-Al-cu-mg alloys

[J]. Mater. Sci. Eng., 2018, 724A: 80

[本文引用: 2]

Mostaed E, Sikora-Jasinska M, Ardakani M S, et al.

Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting

[J]. Acta Biomater., 2020, 105: 319

DOI      PMID      [本文引用: 1]

Zn-based alloys are recognized as promising bioabsorbable materials for cardiovascular stents, due to their biocompatibility and favorable degradability as compared to Mg. However, both low strength and intrinsic mechanical instability arising from a strong strain rate sensitivity and strain softening behavior make development of Zn alloys challenging for stent applications. In this study, we developed binary Zn-4.0Ag and ternary Zn-4.0Ag-xMn (where x = 0.2-0.6wt%) alloys. An experimental methodology was designed by cold working followed by a thermal treatment on extruded alloys, through which the effects of the grain size and precipitates could be thoroughly investigated. Microstructural observations revealed a significant grain refinement during wire drawing, leading to an ultrafine-grained (UFG) structure with a size of 700 nm and 200 nm for the Zn-4.0Ag and Zn-4.0Ag-0.6Mn, respectively. Mn showed a powerful grain refining effect, as it promoted the dynamic recrystallization. Furthermore, cold working resulted in dynamic precipitation of AgZn particles, distributing throughout the Zn matrix. Such precipitates triggered mechanical degradation through an activation of Zn/AgZn boundary sliding, reducing the tensile strength by 74% and 57% for Zn-4.0Ag and Zn-4.0Ag-0.6Mn, respectively. The observed precipitation softening caused a strong strain rate sensitivity in cold drawn alloys. Short-time annealing significantly mitigated the mechanical instability by reducing the AgZn fraction. The ternary alloy wire showed superior microstructural stability relative to its Mn-free counterpart due to the pinning effect of Mn-rich particles on the grain boundaries. Eventually, a shift of the corrosion regime from localized to more uniform was observed after the heat treatment, mainly due to the dissolution of AgZn precipitates. STATEMENT OF SIGNIFICANCE: Owing to its promising biodegradability, zinc has been recognized as a potential biodegradable material for stenting applications. However, Zn's poor strength alongside intrinsic mechanical instability have propelled researchers to search for Zn alloys with improved mechanical properties. Although extensive researches have been conducted to satisfy the mentioned concerns, no Zn-based alloys with stabilized mechanical properties have yet been reported. In this work, the mechanical properties and stability of the Zn-Ag-based alloys were systematically evaluated as a function of microstructural features. We found that the microstructure design in Zn alloys can be used to find an effective strategy to not only improve the strength and suppress the mechanical instability but also to minimize any damage by augmenting the corrosion uniformity.Copyright © 2020. Published by Elsevier Ltd.

Zhuo X R, Wu Y N, Ju J, et al.

Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening

[J]. J. Mater. Res. Technol., 2022, 17: 244

DOI      URL     [本文引用: 1]

Sun S N, Ren Y P, Wang L Q, et al.

Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys

[J]. Mater. Sci. Eng., 2017, 701A: 129

[本文引用: 1]

Zhu X L, Ren T T, Guo P S, et al.

Strengthening mechanism and biocompatibility of degradable Zn-Mn alloy with different Mn content

[J]. Mater. Today Commun., 2022, 31: 103639

[本文引用: 1]

Guo P S, Ren T T, Liu Y X, et al.

Bimodal coarse-grained and unimodal ultrafine-grained biodegradable Zn-0.5 Mn alloy: superplastic mechanism and short-term biocompatibility in vivo

[J]. Mater. Today Commun., 2022, 31: 103660

[本文引用: 2]

Jarzębska A, Maj Ł, Bieda M, et al.

Dynamic recrystallization and its effect on superior plasticity of cold-rolled bioabsorbable zinc-copper alloys

[J]. Materials, 2021, 14: 3483

DOI      URL     [本文引用: 1]

High plasticity of bioabsorbable stents, either cardiac or ureteral, is of great importance in terms of implants’ fabrication and positioning. Zn-Cu constitutes a promising group of materials in terms of feasible deformation since the superplastic effect has been observed in them, yet its origin remains poorly understood. Therefore, it is crucial to inspect the microstructural evolution of processed material to gain an insight into the mechanisms leading to such an extraordinary property. Within the present study, cold-rolled Zn-Cu alloys, i.e., Zn with addition of 1 wt.% and 5 wt.% of Cu, have been extensively investigated using scanning electron microscopy as well as transmission electron microscopy, so as to find out the possible explanation of superior plasticity of the Zn-Cu alloys. It has been stated that the continuous dynamic recrystallization has a tremendous impact on superior plasticity reported for Zn-1Cu alloy processed by rolling to 90% of reduction rate. The effect might be supported by static recrystallization, provoking grain growth and thereby yielding non-homogeneous microstructures. Such heterogeneous microstructure enables better formability since it increases the mean free path for dislocation movement.

Huang C, Wang Y, Yang F, et al.

Additively manufactured biodegradable Zn-Mn-based implants with an unprecedented balance of strength and ductility

[J]. Acta Biomater., 2025, 196: 506

DOI      URL     [本文引用: 1]

Fan S H, Yue R, Li S, et al.

First-principles calculations of diffusion activation energies for designing anti-self-aging biodegradable zinc alloys

[J]. J. Mater. Res., 2021, 36(7): 1475

DOI      [本文引用: 1]

Das A, Kumar Chakravartty J.

Fractographic correlations with mechanical properties in ferritic martensitic steels

[J]. Surf. Topogr.: Metrol. Prop., 2017, 5(4): 045006

[本文引用: 1]

Chae D, Koss D A.

Damage accumulation and failure of HSLA-100 steel

[J]. Mater. Sci. Eng, 2004, 366A(2) : 299

[本文引用: 1]

Ashby M F, Dyson B F.

Creep damage mechanics and micromechanisms

[A]. ValluriSR, TaplinDM R, RaoPR, et al. Fracture 84 [M]. New York: Pergamon Press, 1984: 3

[本文引用: 1]

Monkman E C, Grant N J.

An empirical relationship between rupture life and minimum creep rate in creep-rupture tests

[J]. Proc. ASTM Int., 1956, 56: 593

[本文引用: 1]

Michi R A, Toinin J P, Farkoosh A R, et al.

Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al-Zr-Er-Si alloy

[J]. Acta Mater., 2019, 181: 249

DOI      URL     [本文引用: 1]

Su Y S, Yang Y H, Cao J C, et al.

Research on hot working behavior of low-nickel duplex stainless steel 2101

[J]. Acta Metall. Sin., 2018, 54(4): 485

[本文引用: 1]

苏煜森, 杨银辉, 曹建春 .

节Ni型2101双相不锈钢的高温热加工行为研究

[J]. 金属学报, 2018, 54(4): 485

DOI      [本文引用: 1]

采用Gleeble-3800热力模拟试验机在温度为1123~1423 K、应变速率为0.001~10 s<sup>-1</sup>的条件下对2101双相不锈钢进行了热压缩实验,以研究热变形参数对其热加工行为的影响规律。结果表明,相同应变速率下,随温度升高,流变曲线由动态再结晶向动态回复转变。变形速率由0.001 s<sup>-1</sup>增至0.01和0.1 s<sup>-1</sup>提高了动态再结晶温度范围,而1和10 s<sup>-1</sup>的较高应变速率不利于动态再结晶。在应变速率为0.001~0.1s<sup>-1</sup>、变形温度为1253~1323 K时,峰值应力所对应的应变越小,奥氏体动态再结晶越容易发生,有利于等轴状再结晶组织形成。低应变速率下,变形温度升高使奥氏体再结晶晶粒长大,且Zener-Hollomon参数较大时,动态再结晶效果变差与Mn稳定奥氏体能力较Ni弱有关。基于热变形方程计算得到该不锈钢热变形激活能Q=464.49 kJ/mol,略高于2205双相不锈钢,并建立了峰值流变应力本构方程。结合不同变形条件下的应变曲线和显微组织,根据热加工图确定了最佳热加工区域为应变速率在0.001~0.1 s<sup>-1</sup>、变形温度为1220~1350 K,该区域功率耗散系数处于0.40~0.47的较高值,发生了明显奥氏体动态再结晶。

Sheikh-Ali A D.

The influence of crystallographic texture on grain boundary sliding during superplastic deformation in Zn–1.1% Al alloy

[J]. Mater. Sci. Eng., 2008, 475A(1-2) : 308

[本文引用: 2]

Chen X Y, Li Q N, Zhou Y, et al.

Creep behavior and creep mechanism of Mg-Gd-Y-Sm-Zr alloy

[J]. Vacuum, 2023, 212: 112009

DOI      URL     [本文引用: 1]

Kim W J, Chung S W, Chung C S, et al.

Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures

[J]. Acta Mater., 2001, 49(16): 3337

DOI      URL    

Chung S W, Watanabe H, Kim W J, et al.

Creep deformation mechanisms in coarse-grained solid solution Mg alloys

[J]. Mater. Trans., 2004, 45(4): 1266

DOI      URL    

Mordike B L.

Creep-resistant magnesium alloys

[J]. Mater. Sci. Eng., 2002, 324A(1-2) : 103

[本文引用: 1]

Ren L B, Zhao Y R, Li J J, et al.

Inhibiting creep in fine-grained Mg-Al alloys through grain boundary stabilization

[J]. J. Magnes. Alloy., 2025, 13: 2072

DOI      URL     [本文引用: 1]

Zhu S M, Wu C C, Li G N, et al.

Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications

[J]. Mater. Sci. Eng., 2020, 777A: 139082

[本文引用: 2]

Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics [M]. Oxford: Pergamon Press, 1982: 1

[本文引用: 1]

Wang Y Y, Jia C, Tayebi M, et al.

Microstructural evolution during accelerated tensile creep test of ZK60/SiCp composite after KoBo extrusion

[J]. Materials, 2022, 15(18): 6428

DOI      URL     [本文引用: 1]

In the current study, the creep properties of magnesium alloy reinforced with SiC particles were investigated. For this purpose, ZK60/SiCp composite was produced by the stir casting method following the KoBo extrusion and precipitation hardening processes. The creep tests were performed at 150 °C under 10–110 MPa. The results showed that the stress exponent (n) and the average true activation energy (Q) was changed at high stresses, was found with increasing stress, the creep mechanism changing from grain boundary sliding to dislocation climb. The results of microstructure characterization after the creep test showed that at low stresses, the dynamic recrystallization resulting from twinning induced the GBS mechanism. However, at high stresses, with increasing diffusion rates, conditions are provided for dynamic precipitation and the dislocation climb of the dominant creep mechanism. Examination of the fracture surfaces and the surrounding areas showed that the cavity nucleation in the ternary boundary and surrounding precipitation was the main cause of damage. The evaluation of the samples texture after creep showed that the unreinforced alloy showed a moderately strong fiber texture along the angle of ϕ1 = 0–90°, which was tilted about Φ = 10°. A new strong texture component was observed at (90°, 5°, 0°) for the composite sample, which crept due to minor splitting of the basal pole by ~5° toward RD.

Huang Y J, Liu C M, Wan Y C, et al.

Effect of dislocation-induced aging precipitate bands on creep resistance of Mg-Gd-Y-Zr-Ag alloy

[J]. J. Alloy. Compd., 2023, 960: 170633

DOI      URL     [本文引用: 1]

Zhen R, Wu Z, Xu H Y, et al.

Microstructures and mechanical properties of Mg-13Gd-1Zn alloy

[J]. Chin. J. Mater. Res., 2020, 34(3): 225

DOI      [本文引用: 1]

A ternary alloy with composition of Mg-13Gd-1Zn (%, mass fraction) was prepared by conventional smelting and casting technique. The microstructure and mechanical properties of the as-cast, as-annealed, as-extruded and as-aged (T5) alloy were investigated. The results show that the microstructure of the as-cast alloy consists of α-Mg matrix, (Mg, Zn)3Gd eutectic and a 14H long period staking ordered (14H-LPSO) phase. The significant increase of 14H-LPSO phase after annealing and ageing (T5) treatment in the alloy microstructure indicates that the precipitation of the 14H-LPSO phase occurs in a wide temperature range (200~510oC). The β' and β1 precipitates have also been observed in the alloy after ageing (T5) treatment. Under the combined action of precipitation strengthening and LPSO strengthening, the tensile strength, yield strength and elongation of the alloy are 397 MPa, 197 MPa and 2.56%, respectively. The creep properties of the Mg-13Gd-1Zn alloy are higher than those of the WE54 alloy in the two experimental conditions of 200oC/80 MPa and 200oC/120 MPa.

甄 睿, 吴 震, 许恒源 .

Mg-13Gd-1Zn合金的组织与力学性能

[J]. 材料研究学报, 2020, 34(3): 225

[本文引用: 1]

Sha G Y, Xu Y B, Han E H.

Microstructure and creep behavior of a cast Mg-RE alloy

[J]. Chin. J. Mater. Res., 2003, 17(6): 603

[本文引用: 1]

沙桂英, 徐永波, 韩恩厚.

铸造Mg-RE合金的显微结构及其蠕变行为

[J]. 材料研究学报, 2003, 17(6): 603

[本文引用: 1]

Xiao L, Lu W J, Qin J N, et al.

Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite

[J]. Compos. Sci. Technol., 2009, 69(11-12): 1925

DOI      URL     [本文引用: 1]

Mikhaylovskaya A V, Yakovtseva O A, Mochugovskiy A G, et al.

Influence of minor Zn additions on grain boundary anelasticity, grain boundary sliding, and superplasticity of Al-Mg-based alloys

[J]. J. Alloy. Compd., 2022, 926: 166785

DOI      URL     [本文引用: 1]

/