Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (1): 44-54    DOI: 10.11901/1005.3093.2024.141
  研究论文 本期目录 | 过刊浏览 |
冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响
韩珩1, 李洪峤1, 李鹏2, 马国政3, 郭伟玲3(), 刘明3
1 沈阳化工大学机械与动力工程学院 沈阳 110000
2 江西理工大学机电工程学院 赣州 341000
3 陆军装甲兵学院再制造技术国家重点实验室 北京 100072
Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating
HAN Heng1, LI Hongqiao1, LI Peng2, MA Guozheng3, GUO Weiling3(), LIU Ming3
1 School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110000, China
2 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
3 National Key Laboratory of Remanufacturing, Army Armored Forces Institute, Beijing 100072, China
引用本文:

韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.
Heng HAN, Hongqiao LI, Peng LI, Guozheng MA, Weiling GUO, Ming LIU. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. Chinese Journal of Materials Research, 2025, 39(1): 44-54.

全文: PDF(15988 KB)   HTML
摘要: 

采用高压冷喷涂技术在ADC12铝合金表面沉积Ni-Ti3AlC2复合涂层,研究了喷涂温度对涂层显微组织、力学性能以及摩擦学性能的影响。结果表明,在喷涂压力不变的条件下随着喷涂温度从500 ℃提高到700 ℃,Ni-Ti3AlC2复合涂层内颗粒的塑性变形程度提高,颗粒间的结合状态改善,涂层的结合强度提高了30%,孔隙率降低了60%,硬度提高了14%,磨损率降低了41.7%。喷涂温度为700 ℃的Ni-Ti3AlC2-700 ℃涂层,其微观组织最致密,没有明显的孔隙和裂纹,力学性能最佳,摩擦磨损性能最优。其主要原因是,喷涂温度的提高使复合颗粒的撞击速度提高、Ni颗粒的变形能力增大,从而增大了Ni颗粒与Ti3AlC2陶瓷颗粒的协同作用能力,显著提高了涂层内和涂层与基体之间的结合强度。

关键词 材料表面与界面冷喷涂镍基陶瓷复合涂层微观结构力学性能摩擦学性能    
Abstract

In order to enhance the tribological properties of Al-alloy moving parts, a Ni-Ti3AlC2 composite coating was applied onto the surface of ADC12 Al-alloy using high-pressure cold spraying technology. During the cold spraying process, spraying pressure and temperature are identified as two critical process parameters. In this study, while keeping the spraying pressure constant, the impact of spraying temperature on the microstructure, mechanical properties, and tribological behavior of the Ni-Ti3AlC2 composite coating/ADC12 Al-alloy was assessed. The findings indicate that with an increase in spraying temperature from 500 oC to 700 oC, there is a rise in plastic deformation degree of particles within the Ni-Ti3AlC2 composite coating leading to significantly improved bonding state between particles. This results in a 30% increase in coating bonding strength, a 60% decrease in porosity, a 14% increase in hardness, and a 41.7% reduction in coating wear rate. It is evident that appropriately elevating the spraying temperature may effectively enhance the density, mechanical properties and wear resistance of the coating. For spraying at 700 oC specifically, Ni-Ti3AlC2-700 oC exhibits the densest microstructure with no discernible pores or cracks which signifies superior mechanical properties as well as friction and wear characteristics. This can be attributed to the higher spraying temperature enhanced the striking velocity of composite particles, thereby improving deformability of Ni particles, thus the adhesion between Ni particles and Ti3AlC2 ceramic particles, as well as the adhesion between the coating and substrate may be significant enhanced. As a subsequence, the mechanical properties and frictional behavior of the coating can be substantially improved.

Key wordssurface and interface in the materials    cold spraying    nickel-based ceramic composite coating    microstructure    mechanical property    tribological property
收稿日期: 2024-04-01     
ZTFLH:  TG174.442  
基金资助:国家自然科学基金(52005511);国家自然科学基金(52122508);国家自然科学基金(52130509);辽宁省教育厅项目(JYTMS20231519)
通讯作者: 郭伟玲,副研究员,guoweiling_426@163.com,研究方向为表面工程、冷喷涂技术等
Corresponding author: GUO Weiling, Tel: 13488686221, E-mail: guoweiling_426@163.com
作者简介: 李洪峤,男,2000年生,硕士生
Chemical compositionSiFeCuMnMgNiSnZnAl
Content9.6~12≤ 1.3≤ 1.5-3.5≤ 0.5≤ 0.3≤ 0.5≤ 0.3≤ 1.0Bal.
表1  ADC12铝合金的化学成分
图1  喷涂粉末的形貌和粒径分布
SampleSpraying temperatureSpray pressureGasSpraying distance

Powder

feed rate

Spray AngleNumber of gun cyclesGun velocity
1500 oC5 MPaN220 mm3.5 r/min90°12300 mm/s
2600 oC
3700 oC
表2  冷喷涂Ni-Ti3AlC2涂层的工艺参数
图2  喷涂温度不同的Ni-Ti3AlC2复合涂层表面的 XRD谱
图3  喷涂温度不同的Ni-Ti3AlC2复合涂层截面的形貌
图4  喷涂温度不同的Ni-Ti3AlC2复合涂层的孔隙率和Ti3AlC2含量
图5  Ni-Ti3AlC2复合涂层的硬度
图6  喷涂温度不同的Ni-Ti3AlC2复合涂层的结合强度
图7  基体和Ni-Ti3AlC2复合涂层的干摩擦磨损性能
图8  基体和Ni-Ti3AlC2复合涂层在不同温度下磨痕的三维形貌
图9  基体和Ni-Ti3AlC2复合涂层的磨痕二维轮廓
图10  Ni-Ti3AlC2复合涂层在不同温度下的磨痕形貌
1 Ni Y, Dong X F. Analysis on the development and application of automotive aluminum [J]. Automob. Technol. Mater., 2023, (7): 11
1 倪 炀, 董学锋. 汽车铝发展及应用浅析 [J]. 汽车工艺与材料, 2023, (7): 11
2 Ma G Z, He P F, Wang H D, et al. Promoting bonding strength between internal Al-Si based gradient coating and aluminum alloy cylinder bore by forming homo-epitaxial growth interface [J]. Mater Design., 2023, 227:111764
3 Chen Y F. Research on repair technology of aluminum alloy car body plug welding [D]. Mianyang: Southwest University of Science and Technology, 2019
3 陈元富. 铝合金汽车车身塞焊修复工艺研究 [D]. 绵阳: 西南科技大学, 2019
4 Wang H J. Preparation and properties of cold sprayed IN718 anti-cavitation coating [D]. Chengdu: Southwest Jiaotong University, 2022
4 王皓杰. 冷喷涂IN718抗气蚀涂层制备及性能研究 [D]. 成都: 西南交通大学, 2022
5 Chen W Y, Tan H, Cheng J, et al. Research progress and prospect of tribological properties of cold sprayed copper matrix composite coatings [J]. Mater. Rep., 2022, 36: 58
5 陈文元, 谈 辉, 程 军 等. 冷喷涂铜基复合涂层摩擦学性能的研究进展与展望 [J]. 材料导报, 2022, 36: 58
6 Assadi H, Kreye H, Gartner F, et al. Cold spraying—A materials perspective [J]. Acta Mater., 2016, 116: 382
7 Chen X, Zhou H K, Pi Z M, et al. Deposition behavior and microstructure of cold-sprayed Ni-coated Al particles [J]. Coatings, 2022, 12: 544
8 Xu L, Li J W, Cui C Y, et al. Corrosion behavior and protection mechanism of cold-sprayed Zn15Al alloy coatings in NaCl solution [J]. Chin. J. Mater. Res., 2024, 38(3): 208
8 徐 龙, 李继文, 崔传禹 等. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制 [J]. 材料研究学报, 2024, 38(3): 208
9 Mou H L, Zhao H C, Tian H G, et al. Effects of hBN content and particle size on microstructure, mechanical and tribological properties of NiCr-Cr3C2-hBN coatings [J]. Surf. Coat Technol., 2024, 478: 130330
10 Chen J, Song H, Liu G, et al. Cold Spraying: A new alternative preparation method for nickel-based high-temperature solid-lubrication coating [J]. J. Therm. Spray Technol., 2020, 29: 1892
11 Alino T, C B S, Brajendra M, et al. Subsurface microstructural evolution of high-pressure diecast A365: from cast to cold-sprayed and heat-treated conditions [J]. Metals., 2021, 11: 432
12 Sun W, Bhowmik A, Tan Y W A, et al. Strategy of incorporating Ni-based braze alloy in cold sprayed Inconel 718 coating [J]. Surf. Coat. Technol., 2019, 358: 1006
13 M. W, S. K, A. M, et al. Optimization of ceramic content in nickel-alumina composite coatings obtained by low pressure cold spraying [J]. Surf. Coat Technol., 2021, 405: 126732
14 Li W Y, Zhang Z M, Xu Y X, et al. Research progress of cold sprayed Ni and Ni-based composite coatings: a review [J]. Acta Metall. Sin., 2022, 58: 1
doi: 10.11900/0412.1961.2021.00270
14 李文亚, 张正茂, 徐雅欣 等. 冷喷涂Ni及镍基复合涂层研究进展 [J]. 金属学报, 2022, 58: 1
doi: 10.11900/0412.1961.2021.00270
15 Stark M L, Smid I, Segall E A, et al. Self-lubricating cold-sprayed coatings utilizing microscale nickel-encapsulated hexagonal boron nitride [J]. Tribol T., 2012, 55: 624
16 Selvakumar A, Perumalraj R, Sudagar J, et al. Nickel-multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries [J]. P I Mech. Eng. L-J. Mat., 2016, 230: 319
17 Huang P C, Hou K H, Hong J J, et al. Study of fabrication and wear properties of Ni-SiC composite coatings on A356 aluminum alloy [J]. Wear, 2021, 477: 203772
18 Ning X J, Wang Q S, Yang J Z, et al. Cold-sprayed Ni-cBN coating and its friction and wear properties [J]. New Technol. New Process, 2018, 4: 11
19 Wang Z C, Wang H, Hang H L, et al. Effect of Ta content on high temperature tensile properties of high performance nickel-based powder superalloys [J]. Chin. J. Mater. Res., 2019, 33: 331
19 王志成, 王 浩, 黄海亮 等. Ta含量对高性能镍基粉末高温合金高温拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 331
doi: 10.11901/1005.3093.2018.494
20 Yang G R, Gao D W, Song W M, et al. Formation mechanism of Ni/WC composite cladding layer on steel surface [J]. Chin. J Mater. Res., 2019, 33: 87
20 杨贵荣, 高大文, 宋文明 等. 45钢表面Ni/WC复合熔覆层的形成机制 [J]. 材料研究学报, 2019, 33: 87
doi: 10.11901/1005.3093.2018.510
21 Zhang L L, Huang J B, Diao P Y, et al. Microstructure and friction and wear resistance of CuZn35 coating prepared by cold spraying [J]. Surf. Technol., 2023, 52: 172
21 张龙龙, 黄继波, 刁鹏源 等. 冷喷涂制备CuZn35涂层结构及耐摩擦磨损性能 [J]. 表面技术, 2023, 52: 172
22 Singh S, Raman R K S, Berndt C C, et al. Influence of cold spray parameters on bonding mechanisms: a review [J]. Metals, 2021, 11: 2016
23 Chen W, Yu Y, Tieu K A, et al. Microstructure, mechanical properties and tribological behavior of the low-pressure cold sprayed tin bronze-alumina coating in artificial seawater [J]. Tribol Int., 2020, 142: 105992
24 Zhu Z X, Shi T Z, Chen W Y, et al. Effect of WC-17Co content on microstructure, mechanical properties and tribological behavior of low-pressure cold sprayed tin bronze composite coating [J]. Surf. Coat Technol., 2023, 465: 129589
25 Liang C M. Study on the content and distribution of hard phase in cold-sprayed Al matrix composite coating [D]. Chengdu: Southwest Jiaotong University, 2021
25 梁春明. 冷喷涂Al基复合涂层中硬质相含量与分布研究 [D]. 成都: 西南交通大学, 2021
26 Wang J L, Wang H M, Li Y J, et al. Pore cracking behavior of cold sprayed Al based composite coating during reciprocating friction [J]. Chin. J. Mater. Res., 2024, 38(7): 481
26 王金龙, 王慧明, 李应举 等. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为 [J]. 材料研究学报, 2024, 38(7): 481
doi: 10.11901/1005.3093.2023.409
27 Liu H H, Ren Y P, Li T F, et al. Porosity and its control Measures in cold-sprayed deposits [J]. Mater. Protect., 2022, 55: 1
27 刘晗珲, 任宇鹏, 李铁藩 等. 冷喷涂沉积层中的孔隙及其控制措施 [J]. 材料保护, 2022, 55: 1
28 Han X H, Yao X C, Cao J S, et al. Effect of cold spraying parameters on microstructure and properties of 7050 high strength aluminum alloy axle box body repair layer [J]. Surf. Technol., 2024, 53(5): 194
28 韩晓辉, 姚小春, 曹金山 等. 冷喷涂参数对7050高强铝合金轴箱体修复层组织与性能的影响 [J]. 表面技术, 2024, 53(5): 194
29 Li Y J, Dong T S, Fu B G, et al. Study of the microstructure and properties of cold sprayed NiCr coating [J]. J. Mater. Eng. Perform., 2021, 30: 9067
30 Zhang T, Cheng B, LI W S, et al. Tribological properties of low pressure cold sprayed nickel base ceramic composite coatings [J]. Surf. Technol., 2021, 50: 203
30 张 涛, 成 波, 李文生 等. 低压冷喷涂镍基金属陶瓷复合涂层的摩擦学性能研究 [J]. 表面技术, 2021, 50: 203
[1] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[2] 朱国豪, 陈平, 徐计雷, 孙慧敏. 低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能[J]. 材料研究学报, 2025, 39(2): 103-112.
[3] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[4] 崔捷, 李旭东, 杜宪, 李淑波, 杜文博. 轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响[J]. 材料研究学报, 2024, 38(9): 641-650.
[5] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[6] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[7] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[8] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[9] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[10] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[11] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[12] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[13] 王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
[14] 王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
[15] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.