Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (7): 519-528    DOI: 10.11901/1005.3093.2023.532
  研究论文 本期目录 | 过刊浏览 |
热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响
彭文飞1,2,3, 黄巧东1,2, Moliar Oleksandr1,2, 董超琪1,2, 汪小锋1,3()
1.宁波大学机械工程与力学学院 宁波 315211
2.宁波大学 浙江省零件轧制成形技术研究重点实验室 宁波 315211
3.宁波大学 冲击与安全工程教育部重点实验室 宁波 315211
Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy
PENG Wenfei1,2,3, HUANG Qiaodong1,2, Moliar Oleksandr1,2, DONG Chaoqi1,2, WANG Xiaofeng1,3()
1.Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
2.Key Laboratory of Part Rolling Technology, Ningbo University, Ningbo 315211, China
3.Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
引用本文:

彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
Wenfei PENG, Qiaodong HUANG, Oleksandr Moliar, Chaoqi DONG, Xiaofeng WANG. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. Chinese Journal of Materials Research, 2024, 38(7): 519-528.

全文: PDF(13396 KB)   HTML
摘要: 

研究了固溶、固溶+单级时效和固溶+双级时效三种热处理制度对Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金的微观组织和力学性能的影响。结果表明,这种合金热处理前的组织为双态组织,由初生αp相、次生αs相和β相组成,其中初生αp相的体积分数为22%,次生αs相的体积分数为21%;在双相区固溶后,合金原来的热轧态αpαs相部分转变为β相,其组织由亚稳β相、等轴状初生αp相和粗大片状的次生αs相组成;单级时效后,β相中析出了大量均匀分布的纳米细针状次生αs相;双级时效后α相的体积分数显著提高,随着时效时间的增加初生α相和次生α相的晶粒尺寸逐渐增大。准静态拉伸实验结果表明,与热轧态试样相比双相区固溶态试样的延伸率显著提高,但是屈服强度明显降低;单级时效后试样的强度显著提高,强度-塑性平衡更佳;与热轧态试样相比,双级时效后试样的延伸率有所降低,随着时效时间的增加合金的强度降低而延伸率提高。用加工硬化率曲线解释了不同热处理的钛合金应变硬化率的变化趋势,并基于实验结果拟合了修正的Hall-Petch模型,与实验结果吻合较好。

关键词 金属材料α + β钛合金热处理微观组织力学性能    
Abstract

Herein, the effect of heat treatments (solution, solution+single aging and solution+double aging) on the microstructure and mechanical properties of a novel Ti-based alloy Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr was investigated through microstructure characterization and tensile testing. The microstructure observations indicate that the alloy prior to heat treatment possesses a bimodal microstructure consisted of primary αp phase, secondary αs phase, and β phase, and the volume fraction of the primary αp phase and secondary αs phase is 22% and 21%, respectively. After solution treated in the dual phase zone, a portion of the original αp and αs phases was replaced by β phase and the alloy microstructure is comprised of metastable β phase, equiaxed primary αp phase, and coarse lamellar secondary αs phase. After single aging, a large number of evenly distributed needle-like nano secondary αs phases are precipitated within the β phase; After double aging, the volume fraction of α phase increases significantly, while the grain size of primary αp phase and secondary αs phase increases with the increasing aging time. Quasi-static tensile test results reveal that alloys subjected to solution treatment in the dual phase zone exhibit significant enhancements in elongation compared to the as hot-rolled ones, but yielding at lower stress levels. Single aging results in significant increase of strength, thereby presenting an improved strength-ductility balance of the alloy. In comparison with the hot rolling process, the double aging process is unfavored to the ductility, moreover, with the increasing aging time, the strength decreases and elongation increases gradually. Finally, the variation in the work hardening rate of the alloy subjected to different heat treatments may be explained by work hardening rate-strain curves. Based on the experimental data, the modified Hall-Petch constitutive model is fitted, whilst the results predicted by this constitutive model have high coincidence with the experimental data.

Key wordsmetallic materials    α + β titanium alloy    heat treatment    microstructure    mechanical property
收稿日期: 2023-10-31     
ZTFLH:  TG146.2  
基金资助:宁波市科技创新2025重大专项(2021Z099);国家自然科学基金(52075272);新金属材料国家重点实验室开放基金
通讯作者: 汪小锋,博士,wangxiaofeng@nbu.edu.cn,研究方向为金属构件轻量化成形制造
Corresponding author: WANG Xiaofeng, Tel: 17858883615, E-mail: wangxiaofeng@nbu.edu.cn
作者简介: 彭文飞,男,1983年生,教授
TiAlNbFeCrZrMoVNHO
Bal5.83.01.20.81.01.52.00.0060.0010.095
表1  Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金主要化学成分
图1  Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金热轧棒材的微观组织
Heat treatmentHeat treatment parameter
ST1850oC × 0.5 h WQ
SA1850oC × 0.5 h WQ + 580oC × 4 h AC
SA2850oC × 0.5 h WQ + 750oC × 0.5 h FC + 580oC × 4 h AC
SA3850oC × 0.5 h WQ + 750oC × 1 h FC + 580oC × 4 h AC
SA4850oC × 0.5 h WQ + 750oC × 2 h FC + 580oC × 4 h AC
表2  热处理工艺制度
图2  拉伸试样示意图
图3  热处理制度不同的合金的XRD谱
图4  Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金在850℃固溶后的组织
图5  Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金在850℃固溶+时效后的组织
Heat treatmentαp phase volume fraction Vαp / %αp phase equivalent diameter λ / μm

αs phase volume fraction

Vαs / %

αs phase interval

λ / μm

Hot rolled221.0210.08
ST1361.1150.3
SA1331.2190.03
SA2421.8270.08
SA3421.8290.08
SA4431.9300.1
表3  不同制度热处理后钛合金微观组织的变化
图6  不同制度热处理后钛合金的拉伸工程应力-应变曲线
Heat treatmentMechanical property
UTS / MPaYS / MPaEL / %
Hot rolled1120-6+151054-8+1114.4-1.3+1.7
ST1973-4+21916-4+1415.4-1.8+2.1
SA11149-21+91111-13+914.3-0+2.7
SA21118-13+31106-4+58.2-2+0.3
SA31109-7+41090-1+811.3-1.2+1.8
SA41085-8+211070-4+1111.4-0.3+0
Common titanium alloys
TC49338948.7
TC1110309109
TC16108792016
TC181101104912
SP700-11925.5
表4  Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金的力学性能
图7  不同制度热处理后合金的断口形貌
图8  Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金的加工硬化速率-应变曲线
图9  Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金在910℃固溶后的微观组织
图10  Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金在910℃固溶后的应力-应变曲线
图11  位错运动在次生αs相间距中的示意图
图12  不同微观组织合金的强度分配拟合值与实际值的对比
[1] Wang Y, Hao E, Zhao X, et al. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(5): 169
[2] Kumar R R, Gupta R K, Sarkar A, et al. Vacuum diffusion bonding of α titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics [J]. Mater. Charact., 2022, 183: 111607
[3] Pasang T, Budiman A S, Wang J C, et al. Additive manufacturing of titanium alloys-Enabling re-manufacturing of aerospace and biomedical components [J]. Microelectron. Eng., 2023, 270: 111935
[4] Yu J, Li Z, Qian C, et al. Investigation of deformation behavior, microstructure evolution, and hot processing map of a new near-α Ti alloy [J]. J. Mater. Res. Technol., 2023, 23: 2275
[5] Zhou X, Li Y, Han Z, et al. Unusual stress-induced martensite transformation in Ti-6Al-4V alloy enabled by solution treatment in the lower α + β regime [J]. J. Alloy. Compd., 2023, 956: 170330
[6] Zhang B, Wu X, Liu Z, et al. A pathway to significantly improve the ductility of a high strength PM α + β titanium alloy by short GB α layers and refined α WGB colonies [J]. Mat. Sci. Eng. A, 2023, 864: 144580
[7] Ye X, Wan M, Huang C, et al. Effect of aging temperature on mechanical properties of TC21 alloy with multi-level lamellar microstructure [J]. Mat. Sci. Eng. A, 2022, 840: 142825
[8] Zhang T, Zhu J, Yang T, et al. A new α + β Ti-alloy with refined microstructures and enhanced mechanical properties in the as-cast state [J]. Scr. Mater., 2022, 207: 114260
[9] Chen Z P, Zhu Z H, Song M F, et al. An ultra-high-strength Ti-Al-V-Mo-Nb-Zr alloy designed from Ti-6Al-4V cluster formula [J]. Chin. J. Mater. Res., 2023, 37(4): 308
doi: 10.11901/1005.3093.2022.232
[9] 陈志鹏, 朱智浩, 宋梦凡 等. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金 [J]. 材料研究学报, 2023, 37(4): 308
doi: 10.11901/1005.3093.2022.232
[10] Liu C, Dong Y C, Fang Z G, et al. Microstructure evolution and mechanical properties of new Ti-Al-Fe-B titanium alloy with high strength and ductility [J]. Rare. Metal. Mat. Eng., 2020, 49(5): 1607
[10] 刘 畅, 董月成, 方志刚 等. 新型高强韧Ti-Al-Fe-B系钛合金组织和性能研究 [J]. 稀有金属材料与工程, 2020, 49(5): 1607
[11] Kayani S H, Cui M, Ahmed R T M, et al. Pore formation mechanism and intermetallic phase transformation in Ti-Al alloy during reactive sintering [J]. J. Mater. Res. Technol., 2023, 22: 1878
[12] Školáková A, Leitner J, Salvetr P, et al. Kinetic and thermodynamic description of intermediary phases formation in Ti-Al system during reactive sintering [J]. Mater. Chem. Phys., 2019, 230: 122
[13] Shi Z, Guo H, Liu R, et al. Microstructure and mechanical properties of TC21 titanium alloy by near-isothermal forging [J]. Trans. Nonferrous Met. Soc. China, 2015, 25(1): 72
[14] Zhu X, Fan Q, Zhou G, et al. Influence of hot-rolling on the microstructure and mechanical properties of a near β-type Ti-5.2Mo-4.8Al-2.5Zr-1.7Cr alloy [J]. Prog. Nat. Sci-Mater., 2022, 32(4): 504
[15] Zhu N Y, Chen S H, Liao Q, et al. Effect of solution treatment and aging on microstructure and hardness of TC11 titanium alloy [J]. Heat. Treat. Met., 2022, 47(12): 62
doi: 10.13251/j.issn.0254-6051.2022.12.010
[15] 朱宁远, 陈世豪, 廖 强 等. 固溶时效处理对TC11钛合金显微组织和硬度的影响 [J]. 金属热处理, 2022, 47(12): 62
doi: 10.13251/j.issn.0254-6051.2022.12.010
[16] Wang J, Ye X, Li Y, et al. Effect of annealing temperature on mechanical properties of TC21 titanium alloy with multilevel lamellar microstructure [J]. Mat. Sci. Eng. A, 2023, 869: 144788
[17] Ye X, Wan M, Huang C, et al. Effect of aging temperature on mechanical properties of TC21 alloy with multi-level lamellar microstructure [J]. Mat. Sci. Eng. A, 2022, 840: 142825
[18] Zeng L R, Chen H L, Li X, et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 782
doi: 10.1016/j.jmst.2017.07.016
[19] Zhu W, Lei J, Zhang Z, et al. Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with Bi-modal structure [J]. Mat. Sci. Eng. A, 2019, 762: 138086
[20] Li C, Ding Z L, Huang C, et al. Microstructure and properties of SP-700 titanium alloy after high temperature solid solution and aging with different processes [J]. Mater. Mech. Eng., 2023, 47(1): 48
doi: 10.11973/jxgccl202301007
[20] 李 聪, 丁智力, 黄 灿 等. 不同工艺高温固溶与时效处理后SP-700钛合金的组织与性能 [J]. 机械工程材料, 2023, 47(1): 48
[21] Gu X F, Liu J, Shi J H. Influence of quenching and aging temperature on microstructure andmechanical properties of TC4 titanium alloy [J]. Heat. Treat. Met., 2011, 36(2): 29
[21] 顾晓辉, 刘 君, 石继红. 淬火、时效温度对TC4钛合金组织和力学性能的影响 [J]. 金属热处理, 2011, 36(2): 29
[22] Zhang G, Zhang F S. Effect of heat treatment process on structures and properties of SP-700 titanium alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20(S1): 664
[22] 张 钢, 张丰收. 热处理工艺对SP-700钛合金组织性能的影响 [J]. 中国有色金属学报, 2010, 20(S1): 664
[23] Gu J L, Zhu Z S, Dai B, et al. Effect of cold deformation on aging behavior of Ti-15Mo-2.7Nb-3Al-0.2Si titanium alloy. The New Progress on Material Science and Engineering [C]. Beijing, 2000
[23] 顾家琳, 朱知寿, 代 冰 等. 冷变形对Ti-15Mo-2.7Nb-3Al-0.2Si钛合金时效行为的影响. 2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集 [C]. 北京, 2000
[24] Deng Y T, Li S Q, Huang X, et al. Aging precipitate of beta forged TC17 titanium alloy for aero-engine [J]. Aero. Manu. Technol., 2018, 61(9): 6
[24] 邓雨亭, 李四清, 黄 旭 等. 航空发动机用β锻TC17钛合金时效析出行为研究 [J]. 航空制造技术, 2018, 61(9): 6
[25] Wang X Y, Xie C M. Study on solution-Aging heat treatment of ZTC4 titanium alloys [J]. Acta. Metall. Sin., 2002(z1): 89
[25] 王新英, 谢成木. ZTC4钛合金固溶时效热处理工艺研究 [J]. 金属学报, 2002(z1): 89
[26] Zhao S, Xiao H, Qin T C, et al. Microstructure and properties of TC4 titanium alloy hot-rolled sheet by electron beam cold bed furnace melting [J]. Rare. Metal. Mat. Eng., 2019, 48(12): 4053
[26] 赵 帅, 肖 寒, 秦铁昌 等. EB炉熔炼TC4钛合金热轧板材的组织性能 [J]. 稀有金属材料与工程, 2019, 48(12): 4053
[27] Li M, Li X Y, Ma J K, et al. Research of microstructure evolution and mechanical properties of SP700 titanium alloy sheet [J]. Nonferrous Metal Mat. Eng., 2019, 40(3): 31
[27] 李 蒙, 李晓燕, 马家琨 等. SP700钛合金板轧制过程的组织演变和力学性能研究 [J]. 有色金属材料与工程, 2019, 40(3): 31
[28] Zhu W, Lei J, Zhang Z, et al. Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with Bi-modal structure [J]. Mat. Sci. Eng. A, 2019, 762: 138086
[29] Ren L, Xiao W, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment [J]. Mat. Sci. Eng. A, 2018, 711: 553
[30] Atri R R, Ravichandran K S, Jha S K. Elastic properties of in-situ processed Ti-TiB composites measured by impulse excitation of vibration [J]. Mat. Sci. Eng. A, 1999, 271(1): 150
[31] Tan C, Sun Q, Xiao L, et al. Slip transmission behavior across α/β interface and strength prediction with a modified rule of mixtures in TC21 titanium alloy [J]. J. Alloy. Compd., 2017, 724: 112
[32] Wang B S, Sun F Y, Meng Q E, et al. An approach to mathematical modeling of dislocation link length distribution in metal [J]. Acta Metall. Sin., 1992(3): 6
[32] 王勃生, 孙福玉, 孟庆恩 等. 晶体位错链长统计分布理论公式初探 [J]. 金属学报, 1992(3): 6
[1] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[2] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[3] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[4] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[5] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[6] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[7] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[8] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[9] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[10] 崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
[11] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[12] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[13] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[14] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[15] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.