Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (9): 691-700    DOI: 10.11901/1005.3093.2023.471
  研究论文 本期目录 | 过刊浏览 |
四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理
黄迪1,2, 牛云松1,3, 李帅1, 董志宏1,2, 鲍泽斌1,2(), 朱圣龙1,2
1 中国科学院金属研究所 师昌绪先进材料创新研究中心 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 北京科技大学 新金属材料国家重点实验室 北京 100083
Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying
HUANG Di1,2, NIU Yunsong1,3, LI Shuai1, DONG Zhihong1,2, BAO Zebin1,2(), ZHU Shenglong1,2
1 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Beijing 100083, China
引用本文:

黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
Di HUANG, Yunsong NIU, Shuai LI, Zhihong DONG, Zebin BAO, Shenglong ZHU. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying[J]. Chinese Journal of Materials Research, 2024, 38(9): 691-700.

全文: PDF(14382 KB)   HTML
摘要: 

以四方相YSZ粉末为原料用悬浮液等离子喷涂技术制备具有类柱状结构的陶瓷层,研究了其在1100℃热循环和1300℃热冲击的失效行为。结果表明,这种陶瓷层具有优异的抗热循环和抗热冲击性能,且始终保持四方相。这种涂层在热循环和热冲击中的失效机理不同:在热循环过程中,陶瓷层与热生长氧化物之间热膨胀系数不匹配使两者剥离;而在热冲击产生的冷热循环中陶瓷层中的柱间间隙演变为贯穿裂纹并成为热通道,使粘结层严重氧化和热障涂层失效。

关键词 材料表面与界面悬浮液等离子喷涂热障涂层热循环热冲击失效机理    
Abstract

In this paper, thermal barrier ceramic coatings (TBCs) with columnar-like structure were prepared on high temperature alloys N5 and DZ411 by suspension plasma spraying, using tetragonal yttria stabilization zirconia (YSZ) powder as raw material. The failure behavior of TBCs was assessed by thermal cycling test (i.e. furnace heating to 1100oC for 60 min. and then air cooling for 10 min. as one cycle), and flame thermal shocking test (i.e. quick flame heating to 1300oC and then compressed air cooling to below 300oC as one cycle) respectively. The results show that the coatings have excellent resistance to thermal cycling and flame thermal shocking, and the phase composition of ceramic coatings maintains tetragonal crystallographic structure after all the tests. The failure mechanism of TBCs in thermal cycling and flame thermal shocking is different. Delamination failure occurs at the interface between the ceramic layer and thermal grown oxides (TGO) during thermal cycling, caused by the mismatch of different thermal expansion coefficient. Besides, the main failure source of TBCs during flame thermal shocking is severe internal oxidation of bond coat due to the formation of hot channel, which is converted from gaps between columnar.

Key wordssurface and interface in the materials    suspension plasma spraying    thermal barrier coatings    thermal cycle    thermal shock    failure mechanism
收稿日期: 2023-09-19     
ZTFLH:  TG174.45  
基金资助:国家自然科学基金(51671202, 52301116);两机基础中心项目(P2021-A-IV-002-001);国家科技重大专项(J2019-IV-0006-0074);中国科学院重点部署项目(ZDRW-CN-2021-2-2)
通讯作者: 鲍泽斌,研究员,zbbao@imr.ac.cn,研究方向为高性能高温防护热障涂层体系设计
Corresponding author: BAO Zebin, Tel: (024)23881473, E-mail: zbbao@imr.ac.cn
作者简介: 黄 迪,男,1998年生,博士生
CrCoWMoTaTiAlReCNi
N577.551.56.5-6.23MinorBal.
DZ41113.89.64.01.42.85.13.2-MinorBal.
表1  N5和DZ411高温合金的成分
Total gas flowAtmosphere composition / %, volume fractionSpraying powerSpraying distanceTorch speed
ArN2H2
300 L/min661717131 kW110 mm500 mm/s
表2  悬浮液等离子喷涂参数
图1  制备态陶瓷层的微观结构、表面形貌和柱内高倍放大照片
图2  制备态陶瓷层的XRD谱
图3  1100℃热循环失效后的陶瓷层、完整TGO区域和柱内结构的高倍微观截面照片
图4  TGO区域的线元素扫描结果
图5  陶瓷层的制备态和热循环过程中的XRD谱
图6  热障涂层热冲击5000次和10000次后的微观截面照片
图7  陶瓷层的制备态和热冲击10000次后的XRD谱
1 Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326(5956): 1068
doi: 10.1126/science.1179327 pmid: 19965415
2 Zhao Y, Liu Y B, Zhao W W, et al. Thermal cycling failure mechanism of TBCs sprayed by high energy plasma spraying [J]. Therm. Spray Technol., 2014, 6(4): 33
2 赵 云, 柳彦博, 赵伟伟 等. 高能等离子喷涂TBCs热循环失效机理研究 [J]. 热喷涂技术, 2014, 6(4): 33
3 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280
pmid: 11951028
4 Chen H F, Zhang C, Xuan J H, et al. Effect of TGO evolution and element diffusion on the life span of YSZ/Pt-Al and YSZ/NiCrAlY coatings at high temperature [J]. Ceram. Int., 2020, 46(1): 813
5 Wu J, Zhu W, Mao Z L. Study on the growth of TGO in thermal barrier coatings under thermal cycling [J]. China Ceram., 2021, 57(11): 32
5 伍 杰, 朱 旺, 毛祖莉. 热循环下热障涂层热生长氧化层生长规律研究 [J]. 中国陶瓷, 2021, 57(11): 32
6 Chen Q F, Fan S K, Gong J B, et al. High temperature cyclic oxidation behaviour of ceramic thermal barrier coating [J]. Mater. Sci. Prog., 1992, 6(5): 414
6 陈全芳, 范世凯, 宫俊波 等. 陶瓷热障涂层的高温循环氧化行为 [J]. 材料科学进展, 1992, 6(5): 414
7 Huang F, Nie M, Lin J D, et al. The thermal gradient mechanical fatigue behavior of nickel-based superalloy with thermal barrier coatings [J]. Chin. J. Mater. Res., 2017, 31(1): 9
doi: 10.11901/1005.3093.2016.147
7 黄 丰, 聂 铭, 林介东 等. 涂覆热障涂层构件的热梯度机械疲劳行为研究 [J]. 材料研究学报, 2017, 31(1): 9
8 Xiao B J, Huang X, Robertson T, et al. Sintering resistance of suspension plasma sprayed 7YSZ TBC under isothermal and cyclic oxidation [J]. J. Eur. Ceram. Soc., 2020, 40(5): 2030
9 Kisi E H, Howard C J. Crystal structures of zirconia phases and their inter-relation [J]. Key Eng. Mater., 1998, 153-154: 1
10 Zhang X F, Zhou K S, Zhang J F, et al. Structure evolution of 7YSZ thermal barrier coating during thermal shock testing [J]. J. Inorg. Mater., 2015, 30(12): 1261
10 张小锋, 周克崧, 张吉阜 等. 热震中7YSZ热障涂层结构演变 [J]. 无机材料学报, 2015, 30(12): 1261
doi: 10.15541/jim20150199
11 Jiang K, Liu S B, Wang X. Phase stability and thermal conductivity of nanostructured tetragonal yttria-stabilized zirconia thermal barrier coatings deposited by air-plasma spraying [J]. Ceram. Int., 2017, 43(15): 12633
12 Jiang K, Liu S B, Li Y, et al. Effects of RE3+ ionic radius on monoclinic phase content of 8 mol% REO1.5 partially stabilized ZrO2 (RE = Yb, Y, Gd, and Nd) powder compacts after annealing at high temperature [J]. J. Am. Ceram. Soc., 2014, 97(3): 990
13 Mauer G, Guignard A, Vaßen R, et al. Process diagnostics in suspension plasma spraying [J]. Surf. Coat. Technol., 2010, 205(4): 961
14 Yuan T, Wang S X, He Q, et al. Development of suspension plasma spray thermal barrier coatings [J]. Surf. Technol., 2019, 48(4): 18
14 袁 涛, 王世兴, 何 箐 等. 悬浮液等离子喷涂热障涂层研究进展 [J]. 表面技术, 2019, 48(4): 18
15 Ganvir A, Curry N, Björklund S, et al. Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS) [J]. J. Therm. Spray Technol., 2015, 24(7): 1195
16 Ganvir A, Markocsan N, Joshi S. Influence of isothermal heat treatment on porosity and crystallite size in axial suspension plasma sprayed thermal barrier coatings for gas turbine applications [J]. Coatings, 2017, 7(1): 4
17 Liu Y, Cai H N, Wei Z Y, et al. Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating [J]. Mater. Prot., 2021, 54(11): 1
17 刘 阳, 蔡洪能, 魏志远 等. 等离子喷涂热障涂层内孔隙对其隔热性能的影响 [J]. 材料保护, 2021, 54(11): 1
18 Ganvir A, Joshi S, Markocsan N, et al. Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance [J]. Mater. Des., 2018, 144: 192
19 Curry N, VanEvery K, Snyder T, et al. Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings [J]. Coatings, 2014, 4(3): 630
20 Gupta M, Markocsan N, Li X H, et al. Development of bondcoats for high lifetime suspension plasma sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 2019, 371: 366
21 Li S, Xu M M, Zhang C Y, et al. Effect of pre-oxidation on the failure mechanisms of EB-PVD thermal barrier coatings with (Ni, Pt)Al bond coats [J]. Corros. Sci., 2021, 193: 109873
22 VanEvery K, Krane M J M, Trice R W, et al. Column formation in suspension plasma-sprayed coatings and resultant thermal properties [J]. J. Therm. Spray Technol., 2011, 20: 817
23 Ganvir A, Gupta M, Kumar N, et al. Effect of suspension characteristics on the performance of thermal barrier coatings deposited by suspension plasma spray [J]. Ceram. Int., 2021, 47(1): 272
24 Ling X X, Wang Y Z, Wang X, et al. Numerical study of effect of pore microstructure of layered thermal barrier coatings on thermal insulation performance [J]. Chin. J. Nonferrous Met., 2015, 25(2): 408
24 凌锡祥, 王玉璋, 王 星 等. 层状热障涂层孔隙微结构对其隔热性能影响的数值研究 [J]. 中国有色金属学报, 2015, 25(2): 408
25 Ganvir A, Vaidhyanathan V, Markocsan N, et al. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective [J]. Ceram. Int., 2018, 44(3): 3161
26 Dong H, Yang G J, Li C X, et al. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs [J]. J. Am. Ceram. Soc., 2014, 97(4): 1226
27 Poza P, Gómez-García J, Múnez C J. TEM analysis of the microstructure of thermal barrier coatings after isothermal oxidation [J]. Acta Mater., 2012, 60(20): 7197
28 Yu C T, Xie H Q, Li S, et al. Thermal cycling and interface bonding performance of single phase (Ni, Pt) Al coating with and without pure metastable tetragonal phase 4YSZ [J]. Appl. Surf. Sci., 2023, 615: 156326
29 Zhou D P, Mack D E, Gerald P, et al. Architecture designs for extending thermal cycling lifetime of suspension plasma sprayed thermal barrier coatings [J]. Ceram. Int., 2019, 45(15): 18471
30 Ibégazène H, Alpérine S, Diot C. Yttria-stabilized hafnia-zirconia thermal barrier coatings: The influence of hafnia addition on TBC structure and high-temperature behaviour [J]. J. Mater. Sci., 1995, 30(4): 938
31 Zhou D P, Malzbender J, Sohn Y J, et al. Sintering behavior of columnar thermal barrier coatings deposited by axial suspension plasma spraying (SPS) [J]. J. Eur. Ceram. Soc., 2019, 39(2): 482
32 Wang Q W, Mao W G, Yu M. Analysis of heat-insulating performance of air plasma sprayed thermal barrier coating systems [J]. Mater. Rep., 2011, 25(18): 125
32 王千文, 毛卫国, 喻 明. 等离子喷涂热障涂层隔热性能分析方法 [J]. 材料导报, 2011, 25(18): 125
33 Zhao Y X, Li D C, Zhong X H, et al. Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying [J]. Surf. Coat. Technol., 2014, 249: 48
34 Bacciochini A, Ilavsky J, Montavon G, et al. Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using Ultra-small-angle X-ray scattering (USAXS) [J]. Mater. Sci. Eng., 2010, 528A(1) : 91
35 Ganvir A, Curry N, Markocsan N, et al. Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings [J]. Surf. Coat. Technol., 2015, 268: 70
36 Shi J D, He Q. Service environment simulation test method of thermal barrier coatings [J]. J. Aeronaut. Mater., 2018, 38(2): 32
36 师俊东, 何 箐. 热障涂层服役环境模拟实验方法 [J]. 航空材料学报, 2018, 38(2): 32
doi: 10.11868/j.issn.1005-5053.2018.001003
[1] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[2] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[3] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[4] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[5] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[6] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[7] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[8] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[9] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[10] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] 王月, 付博研, 陈双龙, 邹兵林, 王春杰. 纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能[J]. 材料研究学报, 2023, 37(11): 855-861.
[12] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[13] 邓海龙, 刘兵, 郭扬, 康贺铭, 李明凯, 李永平. 基于内部失效机理预测评估渗碳Cr-Ni齿轮钢的超高周疲劳强度[J]. 材料研究学报, 2023, 37(1): 55-64.
[14] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[15] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.