Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 446-452    DOI: 10.11901/1005.3093.2023.424
  研究论文 本期目录 | 过刊浏览 |
新型热镀锌双相钢的合金成分对界面层和镀层结构的影响
李沅沅1, 梁健1, 熊自柳2, 苗斌1(), 田秀刚3, 齐建军4, 郑士建1()
1.河北工业大学材料科学与工程学院 天津 300401
2.河钢材料技术研究院 石家庄 050023
3.唐山钢铁集团有限责任公司技术中心 唐山 063000
4.河钢股份有限公司 石家庄 050023
Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel
LI Yuanyuan1, LIANG Jian1, XIONG Ziliu2, MIAO Bin1(), TIAN Xiugang3, QI Jianjun4, ZHENG Shijian1()
1.School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2.HBIS Material Technology Research Institute, Shijiazhuang 050023, China
3.Technical Center of Tangshan Iron and Steel Group Co. Ltd., Tangshan 063000, China
4.HBIS Co. Ltd., Shijiazhuang 050023, China
引用本文:

李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
Yuanyuan LI, Jian LIANG, Ziliu XIONG, Bin MIAO, Xiugang TIAN, Jianjun QI, Shijian ZHENG. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. Chinese Journal of Materials Research, 2024, 38(6): 446-452.

全文: PDF(6181 KB)   HTML
摘要: 

用对粘方式制备热镀锌双相钢DP980样品,用TEM表征其截面,用TEM结合电子衍射和EDS表征其界面层结构和镀锌层结构并构建其空间关系。结果表明,与DP780在退火阶段合金元素Mn的外氧化不同,DP980主要发生内氧化和Cr元素与Mn元素的竞争性氧化,界面层中较少的MnO促进热镀锌过程中的Fe-Al反应而生成了连续致密的Fe2Al5抑制层,抑制了镀锌阶段的Fe-Zn反应而使DP980具有较好的热镀锌性能。同时,这种结构使弥散分布在镀锌层中的η-Zn基体生成Fe3Zn10纳米晶而避免生成有较大脆性Fe-Zn相的镀层结构,使DP980保持较好的力学性能。

关键词 材料表面与界面镀锌双相钢微观结构表征选择性氧化界面层结构镀锌层结构    
Abstract

Hot-dip galvanized dual-phase steel DP980 samples were prepared by adhesive method, and their cross-sections were characterized by TEM. The interface layer structure and zinc coating structure were characterized by TEM combined with SAED and EDS. Then spatial morphology and composition distribution of the interfacial layer and galvanized layer was figured. The results indicated that unlike DP780, which mainly undergoes external oxidation of Mn during the annealing stage, DP980 mainly undergoes internal oxidation. Due to the presence of Cr, its oxidation competes with that of Mn. Less MnO in the interface layer may facilitate the Fe-Al reaction in the hot galvanizing process, forming a continuous and dense Fe2Al5 inhibiting layer, which can effectively inhibit the Fe-Zn reaction in the galvanizing stage. This is the main reason why DP980 has good hot dip galvanizing performance. In addition, this structure leads to the formation of Fe3Zn10 nanocrystals dispersed in the η-Zn matrix. This can avoid the formation of a galvanized layer structure containing large size of brittle Fe-Zn phase, which is beneficial for DP980 to maintain good mechanical properties.

Key wordssurface and interface in the materials    galvanized dual-phase steel    microstructure characterization    selective oxidation    interface layer structure    galvanized layer structure
收稿日期: 2023-08-28     
ZTFLH:  TG174  
基金资助:国家自然科学基金(52101013);河北省中央引导地方科技发展资金项目(226Z1012G);河钢材料技术研究院合作研究项目(HG2021104,HG2021123)
通讯作者: 苗斌,副教授,miaobin@hebut.edu.cn,研究方向为先进金属材料透射电子显微学
郑士建,教授,sjzheng@hebut.edu.cn,研究方向为先进层状材料制备、表征与性能
Corresponding author: MIAO Bin, Tel: 13167361369, E-mail: miaobin@hebut.edu.cn
ZHENG Shijian, Tel: 13654039173, E-mail: sjzheng@hebut.edu.cn
作者简介: 李沅沅,女,1998年生,硕士生
图1  热镀锌双相钢TEM截面表征样品的制备示意图
图2  热镀锌DP980双相钢的界面层STEM-EDS
图3  热镀锌DP980双相钢界面层的物相分析
图4  热镀锌DP980双相钢镀锌层的物相分析
图5  热镀锌DP980双相钢的界面层和镀锌层的STEM-EDS
图6  热镀锌DP780、DP980双相钢的氧化物分布结构示意图
图7  热镀锌DP780、DP980双相钢的界面层和镀锌层示意图
1 Xie Z J, Han G, Zhou W H, et al. A novel multi-step intercritical heat treatment induces multi-phase microstructure with ultra-low yield ratio and high ductility in advanced high-strength steel [J]. Scr. Mater., 2018, 155: 164
2 Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design [J]. Annu. Rev. Mater. Res., 2015, 45: 391
3 Li B, He J H, Yu S W, et al. Corrosion behavior of galvanized steel in simulated coastal-industrial atmosphere [J]. Mater. Prot., 2022, 55(7): 128
3 李 波, 何锦航, 余思伍 等. 镀锌钢在模拟沿海-工业大气中的腐蚀行为 [J]. 材料保护, 2022, 55(7): 128
4 Hsu C W, Wang K K, Chang L W, et al. Formation of Fe2Al5 - x Zn x intermetallic crystals at the Fe-Zn interface in hot-dip galvanizing [J]. Mater. Charact., 2018, 137: 189
5 Liu H C, Li F, Shi W, et al. Challenges in hot-dip galvanizing of high strength dual phase steel: Surface selective oxidation and mechanical property degradation [J]. Surf. Coat. Technol., 2012, 206: 3428
6 Liu H S, Kuang S, Teng H X, et al. Fatigue properties of continuous-annealed and continuous hot-dip galvanized 590MPa grade dual phase steels [J]. J. Iron Steel Res., 2015, 27(10): 50
6 刘华赛, 邝 霜, 滕华湘 等. 连续退火与连续热镀锌590MPa级双相钢的疲劳性能 [J]. 钢铁研究学报, 2015, 27(10): 50
doi: 10.13228/j.boyuan.issn1001- 0963.20150072
7 Wu G X, Zhang J Y. Effect of water pressure and soaking time on the selective oxidation of DP980 advanced high strength steel [J]. Appl. Surf. Sci., 2018, 453: 252
8 Chu S J, Jin X Y, Qian H W. Effect of dew point of annealing atmosphere on selective oxidation of three types of dual phase steel [J]. Trans. Mater. Heat Treat., 2021, 42(12): 124
8 储双杰, 金鑫焱, 钱洪卫. 退火气氛露点对3种成分体系双相钢选择性氧化的影响 [J]. 材料热处理学报, 2021, 42(12): 124
doi: 10.13289/j.issn.1009-6264.2021-0267
9 De Freitas Cunha Lins V, Madeira L, Vilela J M C, et al. Selective oxidation of dual phase steel after annealing at different dew points [J]. Appl. Surf. Sci., 2011, 257: 5871
10 Qi C Y, Li Y P, Wang H H, et al. Influence of dew point on oxide morphology and coating interfacial structure of DP steel [J]. Heat Treat. Mater., 2017, 42(4): 32
10 齐春雨, 李远鹏, 王贺贺 等. 露点对双相钢表面氧化物形貌及镀层界面的影响 [J]. 金属热处理, 2017, 42(4): 32
11 Song G M, Vystavel T, Van Der Pers N, et al. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel [J]. Acta Mater., 2012, 60: 2973
12 Song G M, Sloof W G. Effect of alloying element segregation on the work of adhesion of metallic coating on metallic substrate: Application to zinc coatings on steel substrates [J]. Surf. Coat. Technol., 2011, 205: 4632
13 Wang K K, Hsu C W, Chang L W, et al. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel [J]. Appl. Surf. Sci., 2013, 285: 458
14 Deng Z J, Liu J, Lu Z H, et al. Influence of inhibition layer on adhesion of a galvanized high Al dual phase steel [J]. Adv. Mater. Res., 2011, 295-297: 1669
15 Liang J, Miao B, Xiong Z L, et al. The inhibition of MnO on Fe2Al5Zn x growth and associated three-dimensional nested phase distribution in the galvanized coating of high-Al low-Si dual phase steel [J]. Appl. Surf. Sci., 2023, 614: 156153
16 Aslam I, Li B, Martens R L, et al. Transmission electron microscopy characterization of the interfacial structure of a galvanized dual-phase steel [J]. Mater. Charact., 2016, 120: 63
17 Chen K F, Aslam I, Li B, et al. Lift-off of surface oxides during galvanizing of a dual-phase steel in a galvannealing bath [J]. Metall. Mater. Trans., 2019, 50A: 3748
18 Li T F. The role of metallic grain boundary in high temperature oxidation [J]. J. Chin. Soc. Corros. Prot., 2002, 22(3): 180
18 李铁藩. 金属晶界在高温氧化中的作用 [J]. 中国腐蚀与防护学报, 2002, 22(3): 180
19 Sagl R, Jarosik A, Stifter D, et al. The role of surface oxides on annealed high-strength steels in hot-dip galvanizing [J]. Corros. Sci., 2013, 70: 268
20 Arndt M, Duchoslav J, Steinberger R, et al. Nanoscale analysis of the influence of pre-oxidation on oxide formation and wetting behavior of hot-dip galvanized high strength steel [J]. Corros. Sci., 2015, 93: 148
21 Min T, Gao Y M, Chen L, et al. Mesoscale investigation of reaction-diffusion and structure evolution during Fe-Al inhibition layer formation in hot-dip galvanizing [J]. Int. J. Heat Mass Transfer, 2016, 92: 370
22 Giorgi M L, Guillot J B, Nicolle R. Theoretical model of the interfacial reactions between solid iron and liquid zinc-aluminium alloy [J]. J. Mater. Sci., 2005, 40(9-10): 2263
23 Zhu M, Jin X Y, Chen G. Characterization of the coating/substrate interfacial microstructure of hot dip galvanized DP980 steel she-et [J]. Baosteel Technol., 2022, (2): 1
23 朱 敏, 金鑫焱, 陈 光. 热镀锌DP980镀层/基板界面显微结构分析 [J]. 宝钢技术, 2022, (2): 1
24 Liu L H, Che C S, Kong G, et al. Destabilization mechanism of Fe-Al inhibition layer in Zn-0.2%Al hot-dip galvanizing coating and related thermodynamic evaluation [J]. Acta Metall. Sin., 2016, 52(5): 614
doi: 10.11900/0412.1961.2015.00416
24 刘力恒, 车淳山, 孔 纲 等. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估 [J]. 金属学报, 2016, 52(5): 614
doi: 10.11900/0412.1961.2015.00416
[1] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[2] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[3] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[4] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[5] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[8] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[9] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[10] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[11] 张益铭, 赵子彦, 牟娟. 添加Nb元素对TiZr基非晶复合材料性能的影响[J]. 材料研究学报, 2022, 36(6): 401-408.
[12] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[13] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[14] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[15] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.