|
|
|
| 碳化硅吸波材料的原位反应法制备及其机理 |
崔思凯1, 付广艳1( ), 林立海2, 颜雨坤2, 李处森2( ) |
1 沈阳化工大学机械与动力工程学院 沈阳 110142 2 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
| Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature |
CUI Sikai1, FU Guangyan1( ), LIN Lihai2, YAN Yukun2, LI Chusen2( ) |
1 School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2 Shenyang National Research Center for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
Sikai CUI,
Guangyan FU,
Lihai LIN,
Yukun YAN,
Chusen LI.
Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. Chinese Journal of Materials Research, 2024, 38(9): 659-668.
| 1 |
Guo Y, Zhang X F, Chen M, et al. Research progress of MAX phase high temperature absorbing materials [J]. China Powder Sci. Technol., 2021, 27(5): 58
|
| 1 |
郭 阳, 张雪峰, 陈 敏 等. MAX相高温吸波材料的研究展 [J]. 中国粉体技术, 2021, 27(5): 58
|
| 2 |
Li M, Yin X W, Zheng G P, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics [J]. J. Mater. Sci., 2015, 50(3): 1478
|
| 3 |
Sang J H. Low-Observable Technologies of Aircraft [M]. Beijing: Aviation Industry Press, 2013
|
| 3 |
桑建华. 飞行器隐身技术 [M]. 北京: 航空工业出版, 2013
|
| 4 |
Yang M L. Research on micro-structure adjustment and microwave absorption properties of carbon-based composite materials [D]. Harbin: Harbin Institute of Technology, 2020
|
| 4 |
杨明龙. 碳基复合材料的微结构调控及其电磁波吸收性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020
|
| 5 |
Wang J. Study on the properties of polysiloxane Pyrolysis CNTs/Si-O-C high temperature structural absorbing materials [D]. Xi'an: Xi'an University of architecture and technology, 2020
|
| 5 |
王 晶. 聚硅氧烷热解CNTs/Si-O-C耐高温结构吸波材料性能研究 [D]. 西安: 西安建筑科技大学, 2020
|
| 6 |
Wang Y F, Zhu L, Han L, et al. Research status and development trend of electromagnetic absorbing materials [J]. Acta Mater. Compositae Sin., 2023, 40(1): 1
|
| 6 |
王一帆, 朱 琳, 韩 露 等. 电磁吸波材料的研究现状与发展趋势 [J]. 复合材料学报, 2023, 40(1): 1
|
| 7 |
Xing Y M, Yang T, Wang E H, et al. Research progress of SiC composite microwave absorbing materials [J]. Acta Mater. Compositae Sin., 2024, 41
|
| 7 |
邢原铭, 杨 涛, 王恩会 等. SiC复合吸波材料的研究进展 [J]. 复合材料学报, 2024, 41
|
| 8 |
Liang C Y, Wang Z J. Research progress of high temperature microwave absorption materials [J]. J. Aeronaut. Mater., 2018, 38(3): 3
|
| 8 |
梁彩云, 王志江. 耐高温吸波材料的研究进展 [J]. 航空材料学报, 2018, 38(3): 3
|
| 9 |
Zhang M, Li Z, Wang, T, et al. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposi-tes [J]. Chem. Eng. J., 362: 619
|
| 10 |
Wang W C, Liu G, Wang L Y, et al. Electromagnetic properties of coaxial core-shell CNTs@SiC prepared by chemical vapor deposition [J]. Rare Met. Mater. Eng., 2022, 51(10): 3744
|
| 10 |
王伟超, 刘 顾, 汪刘应 等. 化学气相沉积法制备同轴核壳结构CNTs@SiC的电磁特性研究 [J]. 稀有金属材料与工程, 2022, 51(10): 3744
|
| 11 |
Doorbar P J, Kyle-Henney S. Development of continuously reinforced metal matrix composites for aerospace applications [J]. Compr. Compos. Mater. II., 2018, 4: 439
|
| 12 |
Durodola J F, Fellows N, Winfield P, et al. Continuously reinforced metal matrix composites [J]. Mater. Sci. Eng. C., 2017, 3: 717
|
| 13 |
Wan M J, Li H, Li S Q, et al. Investigation on the influence of SiCf/TC17 composites preparation method on growth kinetics of interfacial reactive layer [J]. J. Aeronaut. Mater., 2023, 43(4): 68
|
| 13 |
王敏涓, 李 虎, 李四清 等. SiCf/TC17复合材料制备方法对界面反应层生长动力学的影响 [J]. 航空材料学报, 2023, 43(4): 68
doi: 10.11868/j.issn.1005-5053.2022.000213
|
| 14 |
Lui X Y, Wang F, Gao S T, et al. Preparation of C/Zr0.5Hf0.5C-SiC composite by PIP process its microstructure and flexural proper-ties [J]. J. Mater. Eng., 2023, 51(8): 155
|
| 14 |
刘星煜, 万 帆, 高世涛 等. PIP工艺制备C/Zr0.5Hf0.5C-SiC复合材料及其微观结构和弯曲性能 [J]. 材料工程, 2023, 51(8): 155
doi: 10.11868/j.issn.1001-4381.2023.000151
|
| 15 |
Zhu W Z, Zheng Z X, Jiang K, et al. Preparation of SiC powders by carbonthermal reduction method at low temperature [J]. Bull. Chin. Ceram. Soc., 2012, 31(1): 46
|
| 15 |
朱文振, 郑治祥, 姜 坤 等. 碳热还原法低温制备碳化硅微粉 [J]. 硅酸盐通报, 2012, 31(1): 46
|
| 16 |
Zan W Y, Ma B Y. New progress in preparation of high purity SiC micropowder [J]. Refractories., 2021, 55(2): 161
doi: 10.3969/j.issn.1001-1935.2021.02.016
|
| 16 |
昝文宇, 马北越. 高纯SiC微粉制备进展 [J]. 耐火材料, 2021, 55(2): 161
doi: 10.3969/j.issn.1001-1935.2021.02.016
|
| 17 |
He J F, Zhang H J, Ge S T, et al. Research progress in preparation methods of SiC porous ceramics [J]. Refractories., 2020, 54(2): 195
|
| 17 |
何江锋, 张海军, 葛胜涛 等. SiC多孔陶瓷制备方法研究进展 [J]. 耐火材料, 2020, 54(2): 195
|
| 18 |
Gómez-Gómez A, Moyano J J, Román-Manso B, et al. Highly-porous hierarchical SiC structures obtained by filament printing and partial sintering [J]. J. Eur. Ceram. Soc., 2019, 39(4): 688
|
| 19 |
Zhu W, Fu H, Xu Z F, et al. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology [J]. J. Eur. Ceram. Soc., 2018, 38(14): 4603
|
| 20 |
Pan Z X, Guo X, Zhang Z B, et al. Research progress on silicon-based ceramic precursors for 3D printing [J]. Aerosp. Mater. Technol., 2022, 52(1): 11
|
| 20 |
潘振雪, 郭 香, 张宗波 等. 3D打印用硅基陶瓷前驱体研究进展 [J]. 宇航材料工艺, 2022, 52(1): 11
|
| 21 |
Wu S, Zhang Y W, Chen M, et al. 3D printing technology microwave absorption metamaterial absorbing honeycomb microwave absorbers ceramic matrix composites absorbers [J]. J. Aeronaut. Mater., 2021, 1(6): 13
|
| 21 |
吴 赛, 张有为, 陈 猛 等. 3D打印微波吸收材料研究进展 [J]. 航空材料学报, 2021, 1(6): 13
|
| 22 |
Srikanth V, Roy R, Graham E K, et al. B x O: Phases Present at High Pressure and Temperature [J]. J. Am. Ceram. Soc., 1991, 74(12): 3145
|
| 23 |
Lee E J, Bang M J, Kim B S, et al. Coarsening of high purity SiC particles by gas phase transport [J]. Ceram. Int., 2015, 41(10): 14958
|
| 24 |
Jacobson N S, Lee K N, Fox D S. Reactions of silicon carbide and silicon (Ⅳ) oxide at elevated temperatures [J]. J. Am. Ceram. Soc., 1992, 75(6): 1603
|
| 25 |
Singhal S C. Thermodynamic analysis of the high temperature stability of silicon nitride and silicon carbide [J]. Ceram. Int., 1976, 11(4): 128
|
| 26 |
Huang Q W, Gao J Q, Jin Z H. Effect of heat treatment temperature on microstructure and fracture strength of reaction-sintered silicon carbide [J]. Refractories., 2000, 34(1): 17
|
| 26 |
黄清伟, 高积强, 金志浩. 热处理温度对反应烧结碳化硅材料组织与性能的影响 [J]. 耐火材料, 2000, 34(1): 17
|
| 27 |
Sung H W, Lee G W, Yun E S, et al. Novel process for recrystallized silicon carbide through β-α phase transformation [J]. Ceram. Int., 2020, 46: 21920
|
| 28 |
Bind J M. Phase transformation during hot-pressing of cubic SiC [J]. Mater. Res. Bull., 1978, 13(2): 91
|
| 29 |
Lilov S K. Thermodynamic analysis of phase transformations at the dissociative evaporation of silicon carbide polytypes [J]. Diam. Relat. Mater., 1995, 4(12): 1331
|
| 30 |
Wu A H, Cao W B, Li J T, et al. The influences of hot pressing on the microstructure and mechanical properties of SiC ceramic [J]. Powder Metallurgy Technology. 2001, 19(6): 327
|
| 30 |
武安华, 曹文斌, 李江涛 等. 热压工艺对SiC陶瓷结构及性能的影响 [J]. 粉末冶金技术, 2001, 19(6): 327
|
| 31 |
Ying T P, Zhang J, Liu X G, et al. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application [J]. J. Alloys. Compd., 849: 156662
|
| 32 |
Wei Z H, Peng Y Q, Kang Z W, et al. Progress in polymer-derived silicon carbide ceramics for microwave absorbing applications [J]. J. Ceram., 2021, 42(4): 547
|
| 32 |
魏子涵, 彭雨晴, 康治伟 等. 聚碳硅烷转化碳化硅陶瓷吸波性能的研究进展 [J]. 陶瓷学报, 2021, 42(4): 547
|
| 33 |
Li Y, Zhao Y, Lu X Y, et al. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption [J]. Nano Res., 2016, 9(7): 2034
|
| 34 |
Fang J Z, Xu C F. Study on three kinds of XRD quantitative analysis methods [J]. Coal Convers., 2010, 33(2): 88
|
| 34 |
房俊卓, 徐崇福. 三种X射线物相定量分析方法对比研究 [J]. 煤炭转化, 2010, 33(2): 88
|
| 35 |
Gong A X, Xu C, An Z, et al. Transmission electron microscopy characterization of grain structure and nanoparticles of 15-15Ti ODS austenitic steel [J]. Mater. Rep., 2024, 38(10): 23010111
|
| 35 |
龚翱翔, 徐 驰, 安 瞻 等. 15-15TiODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征 [J]. 材料导报, 2024, 38(10): 23010111
|
| 36 |
Ju Z C. Synthesis and characterization of silicon carbide and titanium carbide nanomaterials [D]. Jinan: Shandong University, 2008
|
| 36 |
鞠治成. 碳化硅和碳化钛纳米材料的制备与表征 [D]. 济南: 山东大学, 2008
|
| 37 |
Xu W Y, Sun J W, Zhu Y F. Preparation and performance of self-assembled carbon/epoxy composite microwave absorbing coating [J]. Chin. J. Mater. Res., 2023, 37(12): 955
|
| 37 |
徐文玉, 孙佳文, 朱曜峰. 自组装碳/环氧树脂复合吸波涂料的制备及性能 [J]. 材料研究学报, 2023, 37(12): 955
|
| 38 |
Li C S, Qin J Y, Lin L H, et al. Research on the application of pyrolytic carbon-based foam structure to thermal vacuum absorbing box [J]. Spacecraft Environment Engineering., 2023, 40(6): 673
|
| 38 |
李处森, 秦家勇, 林立海 等. 热解碳基泡沫结构应用于热真空吸波箱技术研究 [J]. 航天器环境工程, 2023, 40(6): 673
|
| 39 |
Lin L H. Study on carbon-based foam microwave absorbing material for thermal vacuum absorbing box [D]. Hefei: University of Science and Technology of China, 2023
|
| 39 |
林立海. 热真空吸波箱用碳基泡沫吸波材料的研究 [D]. 合肥: 中国科学技术大学, 2023
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|