Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (9): 659-668    DOI: 10.11901/1005.3093.2023.563
  研究论文 本期目录 | 过刊浏览 |
碳化硅吸波材料的原位反应法制备及其机理
崔思凯1, 付广艳1(), 林立海2, 颜雨坤2, 李处森2()
1 沈阳化工大学机械与动力工程学院 沈阳 110142
2 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature
CUI Sikai1, FU Guangyan1(), LIN Lihai2, YAN Yukun2, LI Chusen2()
1 School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Shenyang National Research Center for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
Sikai CUI, Guangyan FU, Lihai LIN, Yukun YAN, Chusen LI. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. Chinese Journal of Materials Research, 2024, 38(9): 659-668.

全文: PDF(18526 KB)   HTML
摘要: 

使热解碳与硅粉分别在1800℃、2000℃和2200℃进行原位反应制备三种SiC材料,观察其微观形貌、物相和晶体结构并测试其电磁吸波性能,研究了原位反应温度对其吸波性能的影响。结果表明,在1800℃硅碳原位反应生成3C结构的β相SiC,在2000℃原位反应的蒸发—冷凝过程中β相SiC向6H结构的α相SiC转变。随着反应温度的提高相变加剧,α相SiC的比例随之提高,SiC材料对电磁波的介电损耗性能减弱,阻抗匹配性能也随之提高。原位反应温度不低于2000℃时生成的SiC材料,其介电损耗和阻抗匹配性能适当,是性能较好的吸波材料。

关键词 复合材料碳化硅吸波材料碳化硅相变原位反应吸波性能    
Abstract

Silicon carbide (SiC) as a kind of high temperature absorbing materials has great application potential, but its application range is limited due to high preparation cost. Herein, the SiC absorbing materials by in-situ reaction of pyrolytic carbon and silicon powder were prepared in vacuum at 1800oC, 2000oC and 2200oC respectively, aiming to clarifying the relevant reaction mechanism so that to search the way for saving preparation cost. The microstructure, phase composition and electromagnetic properties of the three kinds of SiC materials were assessed. The results show that during the in-situ reaction of SiC preparation, the β-phase SiC with 3C crystallographic structure is formed at 1800oC, while at 2000oC the β-phase SiC begins to transform into α-phase SiC with 6H crystallographic structure via evaporation and condensation processes. With the increase of the reaction temperature, the degree of phase trasformation reaction was gradually intensified. Spontaneously, the proportion of α phase SiC also increases gradually, and the dielectric loss ability of the corresponding SiC materials to electromagnetic waves is gradually weakened, the impedance matching performance is gradually improved. In brief, the prepared SiC material presents appropriate comprehensive performance of dielectric loss and impedance matching when the preparation temperature is set above ≥ 2000oC, suitable for use as a wave absorbing material. The results show that it is feasible to prepare SiC absorbing materials with low preparation cost by in-situ reaction method.

Key wordscomposite    silicon carbide microwave absorbing material    sic phase transformation    in-situ reaction    microwave-absorbing ability
收稿日期: 2023-11-24     
ZTFLH:  TB321  
通讯作者: 李处森,副研究员,csli@imr.ac.cn,研究方向为耐极端使用环境吸波材料
付广艳,教授,Fu_guangyan@126.com,研究方向为金属材料及腐蚀与防护技术
Corresponding author: LI Chusen, Tel: 13889306569, E-mail: csli@imr.ac.cn
FU Guangyan, Tel: 13504997591, E-mail: Fu_guangyan@126.com
作者简介: 崔思凯,男,1996年生,硕士生
图1  原位反应法制备碳化硅材料的流程
图2  SiC试样的SEM表征
图3  不同反应烧结温度的SiC试样的XRD谱
I(hight)RIR(K)Wi
T2000#β-SiC3851803.5379.7%
T2000#α-SiC369951.3320.3%
T2200#β-SiC2482483.5356.6%
T2200#α-SiC715871.3343.4%
表1  T2000#和T2200#样品的定量分析结果
图4  T1800试样的TEM表征
图5  T2000试样的TEM表征
图6  T2200试样的TEM表征
图7  SiC吸波材料的介电常数
图8  试样T1800、T2000、T2200的本征阻抗
图9  SiC吸波材料反射率的仿真模型
图10  不同厚度T1800、T2000、T2200试样的反射率
1 Guo Y, Zhang X F, Chen M, et al. Research progress of MAX phase high temperature absorbing materials [J]. China Powder Sci. Technol., 2021, 27(5): 58
1 郭 阳, 张雪峰, 陈 敏 等. MAX相高温吸波材料的研究展 [J]. 中国粉体技术, 2021, 27(5): 58
2 Li M, Yin X W, Zheng G P, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics [J]. J. Mater. Sci., 2015, 50(3): 1478
3 Sang J H. Low-Observable Technologies of Aircraft [M]. Beijing: Aviation Industry Press, 2013
3 桑建华. 飞行器隐身技术 [M]. 北京: 航空工业出版, 2013
4 Yang M L. Research on micro-structure adjustment and microwave absorption properties of carbon-based composite materials [D]. Harbin: Harbin Institute of Technology, 2020
4 杨明龙. 碳基复合材料的微结构调控及其电磁波吸收性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020
5 Wang J. Study on the properties of polysiloxane Pyrolysis CNTs/Si-O-C high temperature structural absorbing materials [D]. Xi'an: Xi'an University of architecture and technology, 2020
5 王 晶. 聚硅氧烷热解CNTs/Si-O-C耐高温结构吸波材料性能研究 [D]. 西安: 西安建筑科技大学, 2020
6 Wang Y F, Zhu L, Han L, et al. Research status and development trend of electromagnetic absorbing materials [J]. Acta Mater. Compositae Sin., 2023, 40(1): 1
6 王一帆, 朱 琳, 韩 露 等. 电磁吸波材料的研究现状与发展趋势 [J]. 复合材料学报, 2023, 40(1): 1
7 Xing Y M, Yang T, Wang E H, et al. Research progress of SiC composite microwave absorbing materials [J]. Acta Mater. Compositae Sin., 2024, 41
7 邢原铭, 杨 涛, 王恩会 等. SiC复合吸波材料的研究进展 [J]. 复合材料学报, 2024, 41
8 Liang C Y, Wang Z J. Research progress of high temperature microwave absorption materials [J]. J. Aeronaut. Mater., 2018, 38(3): 3
8 梁彩云, 王志江. 耐高温吸波材料的研究进展 [J]. 航空材料学报, 2018, 38(3): 3
9 Zhang M, Li Z, Wang, T, et al. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposi-tes [J]. Chem. Eng. J., 362: 619
10 Wang W C, Liu G, Wang L Y, et al. Electromagnetic properties of coaxial core-shell CNTs@SiC prepared by chemical vapor deposition [J]. Rare Met. Mater. Eng., 2022, 51(10): 3744
10 王伟超, 刘 顾, 汪刘应 等. 化学气相沉积法制备同轴核壳结构CNTs@SiC的电磁特性研究 [J]. 稀有金属材料与工程, 2022, 51(10): 3744
11 Doorbar P J, Kyle-Henney S. Development of continuously reinforced metal matrix composites for aerospace applications [J]. Compr. Compos. Mater. II., 2018, 4: 439
12 Durodola J F, Fellows N, Winfield P, et al. Continuously reinforced metal matrix composites [J]. Mater. Sci. Eng. C., 2017, 3: 717
13 Wan M J, Li H, Li S Q, et al. Investigation on the influence of SiCf/TC17 composites preparation method on growth kinetics of interfacial reactive layer [J]. J. Aeronaut. Mater., 2023, 43(4): 68
13 王敏涓, 李 虎, 李四清 等. SiCf/TC17复合材料制备方法对界面反应层生长动力学的影响 [J]. 航空材料学报, 2023, 43(4): 68
doi: 10.11868/j.issn.1005-5053.2022.000213
14 Lui X Y, Wang F, Gao S T, et al. Preparation of C/Zr0.5Hf0.5C-SiC composite by PIP process its microstructure and flexural proper-ties [J]. J. Mater. Eng., 2023, 51(8): 155
14 刘星煜, 万 帆, 高世涛 等. PIP工艺制备C/Zr0.5Hf0.5C-SiC复合材料及其微观结构和弯曲性能 [J]. 材料工程, 2023, 51(8): 155
doi: 10.11868/j.issn.1001-4381.2023.000151
15 Zhu W Z, Zheng Z X, Jiang K, et al. Preparation of SiC powders by carbonthermal reduction method at low temperature [J]. Bull. Chin. Ceram. Soc., 2012, 31(1): 46
15 朱文振, 郑治祥, 姜 坤 等. 碳热还原法低温制备碳化硅微粉 [J]. 硅酸盐通报, 2012, 31(1): 46
16 Zan W Y, Ma B Y. New progress in preparation of high purity SiC micropowder [J]. Refractories., 2021, 55(2): 161
doi: 10.3969/j.issn.1001-1935.2021.02.016
16 昝文宇, 马北越. 高纯SiC微粉制备进展 [J]. 耐火材料, 2021, 55(2): 161
doi: 10.3969/j.issn.1001-1935.2021.02.016
17 He J F, Zhang H J, Ge S T, et al. Research progress in preparation methods of SiC porous ceramics [J]. Refractories., 2020, 54(2): 195
17 何江锋, 张海军, 葛胜涛 等. SiC多孔陶瓷制备方法研究进展 [J]. 耐火材料, 2020, 54(2): 195
18 Gómez-Gómez A, Moyano J J, Román-Manso B, et al. Highly-porous hierarchical SiC structures obtained by filament printing and partial sintering [J]. J. Eur. Ceram. Soc., 2019, 39(4): 688
19 Zhu W, Fu H, Xu Z F, et al. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology [J]. J. Eur. Ceram. Soc., 2018, 38(14): 4603
20 Pan Z X, Guo X, Zhang Z B, et al. Research progress on silicon-based ceramic precursors for 3D printing [J]. Aerosp. Mater. Technol., 2022, 52(1): 11
20 潘振雪, 郭 香, 张宗波 等. 3D打印用硅基陶瓷前驱体研究进展 [J]. 宇航材料工艺, 2022, 52(1): 11
21 Wu S, Zhang Y W, Chen M, et al. 3D printing technology microwave absorption metamaterial absorbing honeycomb microwave absorbers ceramic matrix composites absorbers [J]. J. Aeronaut. Mater., 2021, 1(6): 13
21 吴 赛, 张有为, 陈 猛 等. 3D打印微波吸收材料研究进展 [J]. 航空材料学报, 2021, 1(6): 13
22 Srikanth V, Roy R, Graham E K, et al. B x O: Phases Present at High Pressure and Temperature [J]. J. Am. Ceram. Soc., 1991, 74(12): 3145
23 Lee E J, Bang M J, Kim B S, et al. Coarsening of high purity SiC particles by gas phase transport [J]. Ceram. Int., 2015, 41(10): 14958
24 Jacobson N S, Lee K N, Fox D S. Reactions of silicon carbide and silicon (Ⅳ) oxide at elevated temperatures [J]. J. Am. Ceram. Soc., 1992, 75(6): 1603
25 Singhal S C. Thermodynamic analysis of the high temperature stability of silicon nitride and silicon carbide [J]. Ceram. Int., 1976, 11(4): 128
26 Huang Q W, Gao J Q, Jin Z H. Effect of heat treatment temperature on microstructure and fracture strength of reaction-sintered silicon carbide [J]. Refractories., 2000, 34(1): 17
26 黄清伟, 高积强, 金志浩. 热处理温度对反应烧结碳化硅材料组织与性能的影响 [J]. 耐火材料, 2000, 34(1): 17
27 Sung H W, Lee G W, Yun E S, et al. Novel process for recrystallized silicon carbide through β-α phase transformation [J]. Ceram. Int., 2020, 46: 21920
28 Bind J M. Phase transformation during hot-pressing of cubic SiC [J]. Mater. Res. Bull., 1978, 13(2): 91
29 Lilov S K. Thermodynamic analysis of phase transformations at the dissociative evaporation of silicon carbide polytypes [J]. Diam. Relat. Mater., 1995, 4(12): 1331
30 Wu A H, Cao W B, Li J T, et al. The influences of hot pressing on the microstructure and mechanical properties of SiC ceramic [J]. Powder Metallurgy Technology. 2001, 19(6): 327
30 武安华, 曹文斌, 李江涛 等. 热压工艺对SiC陶瓷结构及性能的影响 [J]. 粉末冶金技术, 2001, 19(6): 327
31 Ying T P, Zhang J, Liu X G, et al. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application [J]. J. Alloys. Compd., 849: 156662
32 Wei Z H, Peng Y Q, Kang Z W, et al. Progress in polymer-derived silicon carbide ceramics for microwave absorbing applications [J]. J. Ceram., 2021, 42(4): 547
32 魏子涵, 彭雨晴, 康治伟 等. 聚碳硅烷转化碳化硅陶瓷吸波性能的研究进展 [J]. 陶瓷学报, 2021, 42(4): 547
33 Li Y, Zhao Y, Lu X Y, et al. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption [J]. Nano Res., 2016, 9(7): 2034
34 Fang J Z, Xu C F. Study on three kinds of XRD quantitative analysis methods [J]. Coal Convers., 2010, 33(2): 88
34 房俊卓, 徐崇福. 三种X射线物相定量分析方法对比研究 [J]. 煤炭转化, 2010, 33(2): 88
35 Gong A X, Xu C, An Z, et al. Transmission electron microscopy characterization of grain structure and nanoparticles of 15-15Ti ODS austenitic steel [J]. Mater. Rep., 2024, 38(10): 23010111
35 龚翱翔, 徐 驰, 安 瞻 等. 15-15TiODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征 [J]. 材料导报, 2024, 38(10): 23010111
36 Ju Z C. Synthesis and characterization of silicon carbide and titanium carbide nanomaterials [D]. Jinan: Shandong University, 2008
36 鞠治成. 碳化硅和碳化钛纳米材料的制备与表征 [D]. 济南: 山东大学, 2008
37 Xu W Y, Sun J W, Zhu Y F. Preparation and performance of self-assembled carbon/epoxy composite microwave absorbing coating [J]. Chin. J. Mater. Res., 2023, 37(12): 955
37 徐文玉, 孙佳文, 朱曜峰. 自组装碳/环氧树脂复合吸波涂料的制备及性能 [J]. 材料研究学报, 2023, 37(12): 955
38 Li C S, Qin J Y, Lin L H, et al. Research on the application of pyrolytic carbon-based foam structure to thermal vacuum absorbing box [J]. Spacecraft Environment Engineering., 2023, 40(6): 673
38 李处森, 秦家勇, 林立海 等. 热解碳基泡沫结构应用于热真空吸波箱技术研究 [J]. 航天器环境工程, 2023, 40(6): 673
39 Lin L H. Study on carbon-based foam microwave absorbing material for thermal vacuum absorbing box [D]. Hefei: University of Science and Technology of China, 2023
39 林立海. 热真空吸波箱用碳基泡沫吸波材料的研究 [D]. 合肥: 中国科学技术大学, 2023
[1] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[2] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[3] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[4] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[5] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[6] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[7] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[8] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[9] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[10] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[11] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[12] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[13] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[14] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[15] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.