Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (9): 651-658    DOI: 10.11901/1005.3093.2024.123
  研究论文 本期目录 | 过刊浏览 |
CeLaAl-Zn合金微观组织和力学性能的影响
李培跃1(), 张明辉1, 孙文韬2, 鲍志豪2, 高琦1, 王延枝1, 牛龙1
1 中国船舶集团有限公司第七二五研究所 洛阳 471023
2 东北大学材料科学与工程学院 沈阳 110819
Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy
LI Peiyue1(), ZHANG Minghui1, SUN Wentao2, BAO Zhihao2, GAO Qi1, WANG Yanzhi1, NIU Long1
1 Luoyang Ship Materials Research Institute, Luoyang 471023, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
Peiyue LI, Minghui ZHANG, Wentao SUN, Zhihao BAO, Qi GAO, Yanzhi WANG, Long NIU. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. Chinese Journal of Materials Research, 2024, 38(9): 651-658.

全文: PDF(13866 KB)   HTML
摘要: 

使用金相(OM)和扫描电镜(SEM)观测、XRD谱、硬度和耐磨性测试等手段,研究了混合稀土元素Ce和La对Al-Zn合金的微观组织和力学性能的影响。结果表明:在Al-Zn合金中加入稀土元素Ce和La,使合金微观组织中沿晶界生成Al11Ce3相和Al11La3相,在合金基体内分布点状富铁相,稀土含量为0.75%时生成棒状初生Al11Ce3相。随着混合稀土含量的提高Al-Zn合金的晶粒逐渐细化,稀土含量为0.75%的合金晶粒尺寸最小,约为151 μm。随着混合稀土含量的提高合金的硬度和耐磨性随之提高,稀土含量为0.75%的合金硬度最高(约为27.5HV);耐磨性最好,平均摩擦因数为1.076,平均磨损率为36.5 mg·N-1·m-1。在Al-Zn合金的摩擦磨损过程中,发生磨料磨损、剥层磨损和塑性变形。

关键词 金属材料Al-Zn合金微合金化微观组织力学性能磨损机理    
Abstract

The effect of mixed rare earth elements Ce and La on the microstructure and mechanical properties of Al-Zn alloy was studied by means of metallographic (OM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), hardness tester and wear resistance test. The results show that after the addition of Ce and La, the Al-Zn alloy presents microstructure composed of three phases: eutectic Al11Ce3 and Al11La3 phases distributed along the grain boundaries and punctate iron-rich phases distributed in the matrix, furthermore, a rod-shaped primary Al11Ce3 phase may emerge when 0.75%RE is added. With the increase of mixed rare earth content, the grain of Al-Zn alloy is gradually refined, while the grain size is the smallest when the rare earth content is 0.75%, which is about 151 μm. The smaller the grain size, the higher the hardness and wear resistance of the alloy. Among others, the hardness is the highest, about 27.5HV, and the wear resistance is also the highest, the average friction factor is 1.076, and the average wear rate is 36.5 mg·N-1·m-1 for the alloy with addition of 0.75% mixed RE. In the process of friction wear, abrasive wear, peeling wear and plastic deformation mainly occur for the Al-Zn alloys.

Key wordsmetallic materials    Al-Zn alloy    microalloying    microstructure    mechanical properties    wear mechanism
收稿日期: 2024-03-18     
ZTFLH:  TG146.21  
通讯作者: 李培跃,研究员,lpy110015@163.com,研究方向为特种金属材料应用技术
Corresponding author: LI Peiyue, Tel: (0379)64829109, E-mail: lpy110015@163.com
作者简介: 李培跃,男,1983年生,博士
SteelAlZnCeLa
Al-ZnBal.1.83--
Al-Zn-0.2REBal.1.830.140.07
Al-Zn-0.5REBal.1.810.300.16
Al-Zn-0.75REBal.1.800.460.24
表1  Al-Zn合金的成分
图1  摩擦磨损实验的示意图
图2  不同稀土含量Al-Zn合金的金相组织
图3  不同稀土含量Al-Zn合金的XRD谱
图4  添加0.75%RE的Al-Zn合金的SEM图像
PointAlZnCeLaFe
1#97.801.930.050.140.08
2#75.634.5412.167.67-
3#73.404.3010.386.015.91
4#86.254.509.110.14-
表2  图4中标示点的EDS分析结果
图5  不同稀土含量Al-Zn合金的偏光组织
图6  不同稀土含量Al-Zn合金的平均晶粒尺寸
图7  不同稀土含量Al-Zn合金的硬度
图8  不同稀土含量Al-Zn合金的摩擦系数
图9  不同稀土含量Al-Zn合金的平均摩擦系数和磨损率
图10  Al-Zn合金表面的磨损形貌
图11  不同稀土含量Al-Zn合金磨损表面的形貌
1 Esquivel J, Gupta R K. Review-corrosion-resistant metastable al alloys: An overview of corrosion mechanisms [J]. J. Electrochem. Soc., 2020, 167(8): 081504
2 Li T X, Li T, Liu Y P, et al. Review on research progress of 7X75 series aluminum alloys [J]. Light Alloy Fabr. Technol., 2023, 51(10): 1
2 李棠旭, 李 婷, 刘越鹏 等. 7X75系列铝合金的发展与展望 [J]. 轻合金加工技术, 2023, 51(10): 1
3 Hou S Z. Research and application of aluminum alloy for automobile [J]. Alum. Fabr., 2019, 6: 8
3 侯世忠. 汽车用铝合金的研究与应用 [J]. 铝加工, 2019, 6: 8
4 Fang H J, Liu H, Sun J, et al. Research status and development trend of 5xxx series aluminum alloys [J]. Mater. Rep., 2023, 37(21): 211
4 房洪杰, 刘 慧, 孙 杰 等. 5xxx系铝合金研究现状及发展趋势 [J]. 材料导报, 2023, 37(21): 211
5 Xiao B L, Qv F J, You Y, et al. Study on corrosion behavior of 5083 aluminum alloy for ships in static seawater [J]. Nonferrous Met. Process., 2020, 49(6): 7
5 肖宝靓, 曲凤娇, 尤 媛 等. 船舶用5083铝合金在静态海水中的腐蚀性能研究 [J]. 有色金属加工, 2020, 49(6): 7
6 Li Z Y, Yu H Y, Sun D B. The tribocorrosion mechanism of aluminum alloy 7075-T6 in the deep ocean [J]. Corros. Sci., 2021, 183: 109306
7 Wu L, Zeng D F, Tao N W. Cyclic aging study of several typical heavy-duty coating systems [J]. Dev. Appl. Mater., 2023, 38(6): 32
7 吴 乐, 曾登峰, 陶乃旺. 几种典型高耐久性防腐蚀涂层体系的循环老化研究 [J]. 材料开发与应用, 2023, 38(6): 32
8 Chen W G, Wang Z X, Xu G L, et al. Friction and anti-corrosion characteristics of arc sprayed Al+Zn coatings on steel structures prepared in atmospheric environment [J]. J. Mater. Res. Technol., 2021, 15: 6562
9 Lv D L, Zhang T, Gong F Y. Study on properties of cold-sprayed Al-Zn coating on S135 drill pipe steel [J]. Adv. Mater. Sci. Eng., 2020: 9209465
10 Cui G B, Ju X H, Ren Q, et al. Characterization of microstructure of hot dip Al-Zn plated coating [J]. Surf. Technol., 2021, 50(4): 361
11 Bonabi S F, Ashrafizadeh F, Sanati A, et al. structure and corrosion behavior of arc-sprayed Zn-Al coatings on ductile iron substrate [J]. J. Therm. Spray Technol., 2018, 27(3): 524
12 Wang Q, Wang Y G, Niu W J, et al. Study on the structure and properties of cold sprayed Al-Zn composite coatings on Q345R plate [J]. Surf. Technol., 2021, 50(2): 287
12 王 强, 王永刚, 牛文娟 等. Q345R板材表面冷喷涂Al-Zn涂层的组织及性能研究 [J]. 表面技术, 2021, 50(2): 287
13 Huang D, Zhao Z H, Zhu J M. Effect of rare-earth element La on microstructure and properties of aluminum-zinc alloy [J]. J. Guangxi Univ. Natl., Nat. Sci. Ed., 2017, 23(3): 86
13 黄 都, 赵祖豪, 祝金明. 稀土La元素对Al-Zn合金微观组织与性能的研究 [J]. 广西民族大学学报(自然科学版), 2017, 23(3): 86
14 Mai B T N. Influence of Recrystallization Annealing on the Microstructure and Ductility of Al-Zn-Mg-Cu Alloy Added La, Ce; proceedings of the International Conference on Material [A], Machines and Methods for Sustainable Development [C]. Berlin, 2023
15 Meng C, Su C, Liu Z, et al. Synergistic effect of RE (La, Er, Y, Ce) and Al-5Ti-B on the microstructure and mechanical properties of 6111 aluminum alloy [J]. Metals, 2023: 606
16 Yu H, Ru Z, Li Y, et al. Effects of Ce on as-cast and homogenization microstructure of Al-Mg-Si alloy [J]. Spec. Cast. Nonferrous Alloys, 2023: 229
17 Wang W Y, Pan Q L, Wang X D, et al. Improved heat and corrosion resistance of high electrical conductivity Al-Mg-Si alloys by multi-alloying of Ce, Sc and Y [J]. Corros. Sci., 2024, 226: 111695
18 Wang G S, Li H R, Li P Y, et al. Effect of cerium on the microstructure and anti-corrosion performance of Al-Zn coatings [J]. Surf. Coat. Technol., 2023, 473: 130046
19 Ma M, Ye W, Yan X D, et al. Effect of trace rare earth Ce on microstructure and corrosion resistance of pure aluminum [J]. Chin. J. Rare Met., 2020, 44(1): 56
19 马 敏, 叶 蔚, 闫晓东 等. 微量稀土铈对纯铝组织及耐蚀性能的影响 [J] 稀有金属, 2020, 44(1): 56
20 Xu D F, Chen K H, Hu G Y, et al. Effects of trace rare earth Ce on microstructure and corrosion properties of Al-Zn-Mg aluminum alloy [J]. Mater. Rep., 2020, 34(8): 8100
20 徐道芬, 陈康华, 胡桂云 等. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响 [J]. 材料导报, 2020, 34(8): 8100
21 Zhang M L, Zhang L J, Liu Z Z, et al. Effect of mixed rare earth (La, Ce) on corrosion resistance of 7A04 aluminum alloy [J] Trans. Mater. Heat Treat., 2022, 43(5): 40
21 张美丽, 张磊军, 刘壮壮 等. 混合稀土(La, Ce)对7A04铝合金耐蚀性能的影响 [J]. 材料热处理学报, 2022, 43(5): 40
doi: 10.13289/j.issn.1009-6264.2021-0568
22 Moodispaw M P, Cinkilic E, Miao J, et al. The Beneficial Effect of Iron in Aluminum-Cerium-Based Cast Alloys [J]. Metall. Mater. Trans. A, 2024, 55(5): 1351
23 Dai K. Study on the regulation mechanism of microstructure and properties of Al-Ce alloy [D]. Ganzhou: Jiangxi University of Science and Technology, 2023
23 戴 琨. Al-Ce合金组织与性能的调控机理研究 [D]. 赣州: 江西理工大学, 2023
24 Ye J Y, Dai K, Wang Z G, et al. Beneficial effects of Sc/Zr addition on hypereutectic Al-Ce alloys: Modification of primary phases and precipitation hardening [J]. Mater. Sci. Eng., A, 2022, 835: 142611
25 Czerwinski F, Amirkhiz B S. On the Al-Al11Ce3 eutectic transformation in aluminum-cerium binary alloys [J]. Materials, 2020, 13(20): 27
26 Czerwinski F. Cerium in aluminum alloys [J]. J. Mater. Sci., 2020, 55(1): 24
27 Wu T, Dunand D C. Microstructure and thermomechanical properties of Al11Ce3 [J]. Intermetallics, 2022, 148: 107636
28 Tiryakioglu M. On the relationship between vickers hardness and yield stress in Al-Zn-Mg-Cu alloys [J]. Mater. Sci. Eng., A, 2015, 633: 17
29 Cui X M, Wang Z W, Cui H, et al. Study on mechanism of refining and modifying in Al-Si-Mg casting alloys with adding rare earth cerium [J]. Mater. Res. Express, 2023, 10(8): 086511
30 Chen Q Q, Zhao Z H, Wang G S, et al. Effect of yttrium content on friction and wear resistance of surfacing welding Mg-Al-Zn all-oy [J]. Rare Met. Mater. Eng., 2018, 47(6): 1812
30 陈庆强, 赵志浩, 王高松 等. Y含量对Mg-Al-Zn堆焊合金摩擦磨损性能的影响 [J]. 稀有金属材料与工程, 2018, 47(6): 1812
[1] 崔捷, 李旭东, 杜宪, 李淑波, 杜文博. 轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响[J]. 材料研究学报, 2024, 38(9): 641-650.
[2] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[14] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.