Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (5): 321-328    DOI: 10.11901/1005.3093.2024.053
  研究论文 本期目录 | 过刊浏览 |
微量氮掺杂Ta涂层的制备及其热冲击和摩擦磨损性能
牛云松1,2, 朱圣龙2(), 温钢柱3, 王殿荣3, 黄进峰1, 陈明辉4(), 陈强5, 王福会4
1.北京科技大学 新金属材料国家重点实验室 北京 100083
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.内蒙古北方重工业集团有限公司 包头 014030
4.东北大学 沈阳材料科学国家研究中心 沈阳 110819
5.西南技术工程研究所 重庆 400039
Preparation, Thermal Shock and Wear Properties of a N-doped Ta Coating
NIU Yunsong1,2, ZHU Shenglong2(), WEN Gangzhu3, WANG Dianrong3, HUANG Jinfeng1, CHEN Minghui4(), CHEN Qiang5, WANG Fuhui4
1.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Inner Mongolia North Heavy Industries Group Co., Ltd., Baotou 014030, China
4.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
5.Southwest Technology and Engineering Research Institute, Chongqing 400039, China
引用本文:

牛云松, 朱圣龙, 温钢柱, 王殿荣, 黄进峰, 陈明辉, 陈强, 王福会. 微量氮掺杂Ta涂层的制备及其热冲击和摩擦磨损性能[J]. 材料研究学报, 2025, 39(5): 321-328.
Yunsong NIU, Shenglong ZHU, Gangzhu WEN, Dianrong WANG, Jinfeng HUANG, Minghui CHEN, Qiang CHEN, Fuhui WANG. Preparation, Thermal Shock and Wear Properties of a N-doped Ta Coating[J]. Chinese Journal of Materials Research, 2025, 39(5): 321-328.

全文: PDF(13526 KB)   HTML
摘要: 

使用氩气或氩气与氮气混合溅射气体磁控溅射制备微量氮掺杂钽涂层,并对其进行了热冲击(水淬)和摩擦磨损实验,研究其热冲击和摩擦磨损性能 。结果表明,在氩气环境中溅射制备的微量氮掺杂Ta涂层为β相。受到热冲击后涂层大面积剥落,10次热冲击使样品的质量损失高达10.24 mg/cm2。涂层的维氏硬度为HV770,摩擦系数为0.556,磨损量为1.9 × 10-3 mm3/(N·m)。在氩气与氮气混合气氛中溅射制备的微量氮掺杂Ta涂层为纯α相。热冲击10次后涂层的质量损失仅为0.90 mg/cm2,热冲击前后涂层的表面形貌未见明显的差异。涂层的硬度为HV1900,摩擦系数为0.304,磨损量为3.7 × 10-4 mm3/(N·m)。

关键词 材料失效与保护氮掺杂钽涂层磁控溅射热冲击磨损    
Abstract

Conventional magnetron sputtered Ta coating prepared by magnetron sputtering in low pressure Ar atmosphere was always of brittle β phase. Replacing Ar with Kr, Xe and other large atomic gases could increase the proportion of α-Ta within the coating, thus increasing the toughness of the coating. However, Kr and Xe etc. are rare and expensive, which is not suitable for production. In this study, a single-phase α-Ta coating was prepared on 304 stainless steel by magnetron sputtering in low pressure mixed Ar+N2 atmosphere, which is far cheap than the rare gases. By comparing the results of water quenching (thermal shock) test and wear test for the two type coatings, i.e. prepared in low pressure Ar and Ar+N2 respectively, it is found that: Prepared in low pressure Ar atmosphere, the sputtered Ta coating is mainly β-Ta. After 10 cycles of thermal shock, the oxide scale spalls off largely with a loss weight of 10.24 mg/cm2. Its Vickers hardness is HV370, the friction coefficient is 0.556, and the wear loss is as high as 1.9 × 10-3 mm3/(N·m); In the contrast, prepared in low pressure mixed Ar + N2 atmosphere, the sputtered Ta coating is pure α-Ta. After 10 cycles of thermal shock, its loss in weight is only 0.90 mg/cm2, what's more, there is no significant difference in surface morphology before and after thermal shock. Its Vickers hardness is HV1900, the friction coefficient is 0.304, and the wear loss is only 3.7 × 10-4 mm3/(N·m).

Key wordsmaterials failure and protection    N-doped Ta coating    magnetron sputtering    thermal shock    wear
收稿日期: 2024-01-22     
ZTFLH:  TG174.444  
基金资助:国家自然科学基金(51701223)
通讯作者: 朱圣龙,研究员,slzhu@imr.ac.cn,研究方向为高温防护涂层陈明辉,教授,mhchen@mail.neu.edu.cn,研究方向为耐磨耐蚀材料
Corresponding author: ZHU Shenglong, Tel: (024) 23904856, E-mail: slzhu@imr.ac.cnCHEN Minghui, Tel: (024) 83691562, E-mail: mhchen@mail.neu.edu.cn
作者简介: 牛云松,男,1984年生,博士生
图1  两种沉积态钽涂层的形貌
图2  制备态Ta(Ar)和Ta(Ar+N2)涂层的XRD谱
图3  Ta(Ar)和Ta(Ar+N2)涂层以及304不锈钢基体的载荷(P)-位移(h)曲线
Hardness / GPaModulus / GPa
Ta(Ar+N2)14.7233.8
Ta(Ar)6.3219.7
304SS4.0230.8
表1  纳米压痕曲线反映的Ta(Ar)和Ta(Ar+N2)涂层以及304不锈钢基体的硬度和弹性模量
图4  Ta(Ar)和Ta(Ar+N2)涂层820 ℃的热冲击动力学曲线
图5  Ta(Ar)和Ta(Ar+N2)涂层在820 ℃热冲击10循环后的XRD谱
图6  Ta(Ar)涂层在820 ℃热冲击10个循环后表面和截面的形貌
图7  在820 ℃热冲击10个循环后Ta(Ar+N2)涂层的表面和截面形貌
图8  Ta(Ar)和Ta(Ar+N2)涂层的摩擦系数
CoatingsWeight loss / mgVolume loss / mm3·(N·m)-1
Ta(Ar)14.71.9 × 10-3
Ta(Ar+N2)6.33.7 × 10-4
表2  用称重法和磨损坑体积法测出的两种涂层的磨损量
图9  摩擦磨损实验后Ta(Ar)和Ta(Ar+N2)涂层表面的形貌
1 Guan S, Zhang Q, Hu R N. Study on mechanism of additives for chromium electrodeposition by XPS and electrochemical methods [J]. Acta Metall. Sin., 2000, 36(11): 1179
1 关 山, 张 琦, 胡如南. 利用XPS及电化学方法研究电镀Cr添加剂的作用机理 [J]. 金属学报, 2000, 36(11): 1179
2 Song Y M, Wen G Z, Zhang J. Technologies to increase barrel life of large-calibre gun [J]. Equip. Environ. Eng., 2022, 19(7): 1
2 宋彦明, 温钢柱, 张 杰. 大口径火炮身管寿命提升技术探讨 [J]. 装备环境工程, 2022, 19(7): 1
3 Myers S, Lin J L, Souza R M, et al. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering [J]. Surf. Coat. Technol., 2013, 214: 38
4 Lee S L, Windover D, Audino M, et al. High-rate sputter deposited tantalum coating on steel for wear and erosion mitigation [J]. Surf. Coat. Technol., 2002, 149(1): 62
5 Maeng S M, Axe L, Tyson T A, et al. Corrosion behavior of magnetron sputtered α-Ta coatings on smooth and rough steel substrates [J]. Surf. Coat. Technol., 2006, 200(20-21): 5717
6 Lundin D, Sarakinos K. An introduction to thin film processing using high-power impulse magnetron sputtering [J]. J. Mater. Res., 2012, 27: 780
7 Lin J L, Moore J J, Sproul W D, et al. Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering [J]. IEEE Trans. Plasma Sci., 2010, 38(11): 3071
8 Ferreira F, Sousa C, Cavaleiro A, et al. Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode [J]. Surf. Coat. Technol., 2017, 314: 97
9 Frank S, Gruber P A, Handge U A, et al. In situ studies on the cohesive properties of α- and β-Ta layers on polyimide substrates [J]. Acta Mater., 2011, 59(15): 5881
10 Ren H, Sosnowski M. Tantalum thin films deposited by ion assisted magnetron sputtering [J]. Thin Solid Films, 2008, 516(8): 1898
11 Jiang A Q, Tyson T A, Axe L. The structure of small Ta clusters [J]. J. Phys.: Condens. Matter, 2005, 17: 6111
12 Matson D W, McClanahan E D, Lee S L, et al. Properties of thick sputtered Ta used for protective gun tube coatings [J]. Surf. Coat. Technol., 2001, 146-147: 344
13 Lee S L, Wei R H, Todaro M, et al. Electroplated and plasma enhanced magnetron sputtered Ta and Cr coatings for high temperature and high pressure operation [J]. MRS Online Proc. Library, 2006, 987: 9870313
14 Wang S, Xiong D S, Li J L, et al. Wear and erosion resistance properties of electroplating Ta coating in molten salt [J]. China Surf. Eng., 2015, 28(2): 101
14 王 升, 熊党生, 李建亮 等. 熔盐电镀钽及其耐磨损烧蚀性能 [J]. 中国表面工程, 2015, 28(2): 101
15 Cui J T, Liu X L, Tian X B, et al. Microstructures and properties of tantalum film grown by DC magnetron sputtering [J]. Chin. J. Vac. Sci. Technol., 2007, 27(3): 259
15 崔江涛, 刘向力, 田修波 等. 直流磁控溅射沉积钽膜的结构与性能研究 [J]. 真空科学与技术学报, 2007, 27(3): 259
16 Peng X M, Xia C Q, Wu A R, et al. Preparation of Ta-W coating on titanium alloy and its oxidation behavior [J]. Chin. J. Nonferr. Metals, 2015, 25(6): 1567
16 彭小敏, 夏长清, 吴安如 等. 钛合金表面Ta-W涂层的制备及循环氧化行为 [J]. 中国有色金属学报, 2015, 25(6): 1567
17 Guo P. The research of sueface characteristics and corrosion resistance of tantalum thin films deposited on 30CrMnSiNi2A steel by DC bias-voltage sputtering [D]. Harbin: Harbin Institute of Technology, 2011
17 郭 平. 30CrMnSiNi2A钢表面二极溅射镀钽层的结构及性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
18 Arranz A, Palacio C. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: a factor analysis study of the Ta 4 f XPS core level [J]. Appl. Phys., 2005, 81A: 1405
19 Goldschmidt H J. Interstitial Alloys [M]. New York: Springer, 1967
20 Östhagen K, Kofstad P. The reaction between tantalum and nitrogen at 800~1300 oC [J]. J. Less Common Metals, 1963, 5: 7
21 Cui W F, Cao D, Qin G W. Microstructure and wear resistance of Ti/TiN multilayer films deposited by magnetron sputtering [J]. Acta Metall. Sin., 2015, 51(12): 1531
doi: 10.11900/0412.1961.2015.00115
21 崔文芳, 曹 栋, 秦高悟. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能 [J]. 金属学报, 2015, 51(12): 1531
doi: 10.11900/0412.1961.2015.00115
22 Ma Y T, Liu J B, Cui R L, et al. Research on the preparation and performance of Tungsten-Aluminum transmission target for micro-computed tomography by magnetron sputtering [J]. Acta Metall. Sin., 2015, 51(11): 1416
22 马玉田, 刘俊标, 霍荣玲 等. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究 [J]. 金属学报, 2015, 51(11): 1416
23 Sui X D, Li J G, Wang Q, et al. Preparation of Ti1 - x Al x N coating in cutting titanium alloy and its cutting performance [J]. Acta Metall. Sin., 2016, 52(6): 741
23 隋旭东, 李国建, 王 强 等. 钛合金切削用Ti1 - x Al x N涂层的制备及其切削性能研究 [J]. 金属学报, 2016, 52(6): 741
doi: 10.11900/0412.1961.2015.00454
24 Tan M X. Extracting hardness-displacement relations and elastic modulus using nanoindentation loading curves [J]. Acta Metall. Sin., 2005, 41(10): 1020
24 谭孟曦. 利用纳米压痕加载曲线计算硬度-压入深度关系及弹性模量 [J]. 金属学报, 2005, 41(10): 1020
25 Qian Y H, Li M S, Zhang Y M. Cracking and spalling behavior of thin oxide scale [J]. Corros. Sci. Prot. Technol., 2003, 15(2): 90
25 钱余海, 李美栓, 张亚明. 氧化膜开裂和剥落行为 [J]. 腐蚀科学与防护技术, 2003, 15(2): 90
26 Wang S. The preparation of Tantalum coating and the research of wear and ablation resistance [D]. Nanjing: Nanjing University of Science & Technology, 2015
26 王 升. 钽涂层的制备及其磨损与烧蚀性能研究 [D]. 南京: 南京理工大学, 2015
[1] 李红蕾, 刘闯, 卢政伟, 褚天义, 陈育秋, 姜肃猛, 宫骏, 裴志亮. Ni-Al2O3/Diamond复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 314-320.
[2] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[3] 李炎阳, 于驰, 赵伟, 高秀华, 杜林秀. 1200 MPa级海洋平台用无碳化物贝氏体中锰钢腐蚀行为[J]. 材料研究学报, 2025, 39(1): 21-34.
[4] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[5] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[6] 景婷, 梁哲铭, 于洋. 高温合金基于二次K熵的疲劳扩展声发射特征[J]. 材料研究学报, 2024, 38(7): 490-498.
[7] 崔怀云, 刘智勇, 卢琳. J55钢在模拟CO2 注入井环空环境中的关键性腐蚀因素[J]. 材料研究学报, 2024, 38(4): 308-320.
[8] 李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
[9] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[10] 王慧明, 王金龙, 李应举, 张宏毅, 吕晓仁. Al基复合涂层干摩擦磨损的有限元分析[J]. 材料研究学报, 2024, 38(12): 941-949.
[11] 李玉峰, 冯峰, 刘世博, 刘丽爽, 高晓辉. 氮磷共掺杂石墨烯的制备及水性复合涂层的耐蚀性能[J]. 材料研究学报, 2024, 38(11): 861-871.
[12] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[13] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[14] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[15] 胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.