Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (12): 941-949    DOI: 10.11901/1005.3093.2023.620
  研究论文 本期目录 | 过刊浏览 |
Al基复合涂层干摩擦磨损的有限元分析
王慧明1, 王金龙1, 李应举2, 张宏毅3, 吕晓仁1()
1 沈阳工业大学机械工程学院 沈阳 110870
2 中国科学院金属研究所 沈阳 110179
3 沈阳航天三菱汽车发动机制造有限公司 沈阳 110179
Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings
WANG Huiming1, WANG Jinlong1, LI Yingju2, ZHANG Hongyi3, LV Xiaoren1()
1 College of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110179, China
3 Shenyang Aerospace Mitsubishi Motors Automobile Engine Manufacturing Co., Ltd., Shenyang 110179, China
引用本文:

王慧明, 王金龙, 李应举, 张宏毅, 吕晓仁. Al基复合涂层干摩擦磨损的有限元分析[J]. 材料研究学报, 2024, 38(12): 941-949.
Huiming WANG, Jinlong WANG, Yingju LI, Hongyi ZHANG, Xiaoren LV. Finite Element Analysis of Dry Friction Wear of Al-based Composite Coatings[J]. Chinese Journal of Materials Research, 2024, 38(12): 941-949.

全文: PDF(5682 KB)   HTML
摘要: 

用冷喷涂技术在AZ91镁合金基体上制备出不同Al2O3含量(0%、15%、30%、45%)的复合涂层,测量Al2O3的沉积效率和涂层的孔隙率,进行往复干摩擦磨损实验并计算磨损沟壑体积,研究了Al2O3含量、载荷、频率对Al基复合涂层摩擦磨损行为的影响。建立Al基复合涂层的有限元模型,用嵌入Archard模型的摩擦磨损子程序得到了有限元磨损量仿真值并将其与磨损实验值对比。结果表明,随着Al2O3含量的提高复合涂层的孔隙率降低,Al2O3颗粒的沉积效率和耐磨性提高。在载荷为2 N、频率为1 Hz条件下Al2O3含量为0%、30%、45%的Al基复合涂层其有限元磨损量仿真值与实验值的差小于4%,证明了有限元模型的正确性。在此工况下用该模型计算出Al2O3含量为15%的涂层其有限元磨损量的仿真值为0.0249 mm3,与试验磨损量的差为5.9574%,表明此模型具有普适性。

关键词 材料表面与界面镁合金冷喷涂摩擦磨损有限元分析    
Abstract

Al-based composite coatings with different Al2O3 contents (0%, 15%, 30%, 45%) were prepared on AZ91 Mg-alloy substrate by cold spraying technique, the deposition efficiency of Al2O3 and the porosity of the coatings were measured, and their reciprocating dry friction wear performance was examined in terms of wear gouge volume. Meanwhile, the effect of Al2O3 content, the applied load, and frequency on the friction and wear behavior of Al-based composite coatings were investigated. A finite element model of the Al-based composite coating was established, and the simulated values of the finite element wear volume were obtained by using the friction and wear subroutine (UMESHMOTION) embedded with the Archard model, which then were compared with those acquired from the friction and wear experiments. The results show that with the increasing Al2O3 content, the porosity of the composite coatings decreases, while the deposition efficiency of Al2O3 particles, and thereby the wear resistance of coatings increases. The simulated value of the finite element wear calculated by the model under this condition is 0.0249 mm3 for the coating with 15% Al2O3with a difference of 5.9574% compared to that acquired from the wear experiments, indicating the universality of the proposed model.

Key wordssurface and interface in the materials    magnesium alloy    cold spray coating    friction and wear    FEA
收稿日期: 2023-12-28     
ZTFLH:  TH117  
基金资助:国防科技重点实验室基金(JCKY61420052021)
通讯作者: 吕晓仁,教授,xrlvsut@126.com,研究方向为材料表面工程技术
Corresponding author: LV Xiaoren, Tel: 13504077230, E-mail: xrlvsut@126.com
作者简介: 王慧明,女,1982年生,副教授
ElementAlZnMg
Content91Bal.
表1  AZ91镁合金的化学成分

Spray pressure

/ MPa

Gas temperature

/ oC

Powder feeding voltage / mVPowder feeding rate / g·min-1Nozzle distance / mm
1.6230283030
表2  冷喷涂工艺参数
图1  磨损仿真流程
图2  SOLIDWORKS往复摩擦磨损的三维实体模型
图3  Al基复合涂层的模型
SampleMaterialElastic modulus / MPaΜρ / t·mm-3
CoatingAl700000.332.7 × 10-9
Al2O33750000.233.5 × 10-9
Grinding pairSi3N43200000.263.15 × 10-9
SubtrateAZ91450000.351.78 × 10-9
表3  模型材料的属性
图4  AlE网格区域
图5  Al基复合涂层的孔隙率
图6  复合涂层Al2O3沉积效率
Load / NFrequency / HzFriction coefficient
AZ91Al15% Al2O330% Al2O345% Al2O3
210.280.950.820.690.52
40.250.920.790.660.49
80.260.910.770.540.49
100.230.880.650.600.46
40.50.290.970.940.700.55
20.220.860.780.580.40
表4  AZ91镁合金基体和冷喷涂涂层的摩擦系数随载荷和频率的变化
Load / N

Frequency

/ Hz

AZ91Al15% Al2O330% Al2O345% Al2O3
WearGully volumeWearGully volumeWearGully volumeWearGully volumeWear
210.03250.06990.06790.02390.02350.01920.01900.01680.0167
40.05000.10740.10430.04280.04210.03750.03710.03240.0322
80.10660.20730.20140.09380.09230.08020.07930.06970.0693
100.12180.23790.23110.11610.11420.09440.09340.08460.0841
40.50.06750.14610.14190.05330.05250.04770.04720.04320.0429
20.04200.09030.08780.03450.03400.02990.02900.02290.0228
表5  AZ91镁合金及其Al基复合涂层的磨损量与载荷和频率的关系
CoatingAl30% Al2O345% Al2O3
K / mm2·N-12.8292 × 10-57.9167 × 10-66.9583 × 10-6
表6  2 N、1 Hz工况下的磨损系数
图7  与AZ91基体相比Al基复合涂层耐磨性提升率ε
图8  AZ91镁合金和Al基复合涂层在磨痕的照片(a) AZ91; (b) 0% Al2O3; (c) 15% Al2O3; (d) 30% Al2O3; (e) 45% Al2O3
CategoryThickNormalThinVery thin
Grid side length / mm0.20.10.050.025
Time / h10162562
Wear / mm30.02620.02250.01950.0192
表7  网格无关化的验证
图9  Al2O3粉末含量不同的Al基复合涂层的磨损深度有限元仿真云图
CoatingAl30% Al2O345% Al2O3
Simulated / mm30.07020.01950.0170
Experimental / mm30.06790.01900.0167
e / %3.38732.63161.7964
表8  Al2O3含量为0%、30%、45%的Al基复合涂层的磨损量仿真值和实验数据及其差
图10  Al2O3含量为15%的Al基复合涂层的磨损深度仿真云图
1 Wang W, Han P, Peng P, et al. Friction stir processing of magnesium alloys: a review [J]. Acta Metall. Sin., 2020, 33: 43
2 Wang G G, Weiler J P. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications [J]. J. Magnes. Alloy., 2023, 11(1): 78
3 He X L, Liang H Y, Yan Z F, et al. Stress corrosion cracking behavior of micro-arc oxidized AZ31 alloy [J]. Proc. Inst. Mech. Eng., 2020, 234C: 1640
4 Wang G Q, Wang S R, Yin Z Q, et al. Synthesis of Ni-WC/Al-Ni functionally graded coating with advanced corrosion and wear resistance on AZ91D Mg alloy by laser cladding [J]. Mater. Lett., 2023, 333: 133645
5 Chen X J, Xie X C, Zhang Y P, et al. Tungsten carbide coating prepared by ultrasonic shot peening to improve the wear properties of magnesium alloys [J]. J. Mater. Res. Technol., 2023, 26: 2451
6 Liu X H, Wang X X, Ren L Y, et al. Improved deposition quality of calcium-phosphate coating on the surface of WE43 magnesium alloy via FCVA sputtering pretreatment [J]. J. Mater. Res. Technol., 2023, 26: 6672
7 Li P Y, Liu Z T, Kang S M, et al. Effect of plasma treatment on performance of polybutylene adipate coating on biomedical AZ31 Mg-alloy [J]. Chin. J. Mater. Res., 2023, 37(4): 271
doi: 10.11901/1005.3093.2022.271
7 李鹏宇, 刘子童, 亢淑梅 等. 等离子处理对医用镁合金表面聚合物防护涂层的影响 [J]. 材料研究学报, 2023, 37(4): 271
doi: 10.11901/1005.3093.2022.271
8 Chen C Y, Xie Y C, Yan X C, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing [J]. Addit. Manuf., 2019, 27: 595
9 Mouli G C, Chakradhar R P S, Srivastava M, et al. Cold-sprayed Cu-Zn-Al2O3 coating on magnesium alloy: enhanced microhardness and corrosion behavior [J]. J. Mater. Eng. Perform., 2023, 32(14): 6160
10 Xue N, Li W W, Shao L, et al. Comparison of cold-sprayed coatings of copper-based composite deposited on AZ31B magnesium alloy and 6061 T6 aluminum alloy substrates [J]. Materials, 2023, 16(14): 5120
11 Jenkins R, Yin S, Aldwell B, et al. New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification [J]. J. Mater. Sci. Technol., 2019, 35(3): 427
doi: 10.1016/j.jmst.2018.09.045
12 Mangalarapu T B, Kumar S, Gandham P, et al. Cold spraying of Al-aerospace alloys: Ease of coating deposition at high stagnation temperatures [J]. Surf. Coat. Technol., 2023, 467: 129703
13 Li W Y, Yang K, Yin S, et al. Solid-state additive manufacturing and repairing by cold spraying: A review [J]. J. Mater. Sci. Technol., 2018, 34(3): 440
doi: 10.1016/j.jmst.2017.09.015
14 Mao X C, Duan F C, Wang F Y, et al. Interfacial microstructure characterization and solderability of the low pressure cold sprayed Cu-Al2O3 coating on Al substrate [J]. Surf. Coat. Technol., 2023, 452: 129093
15 Koivuluoto H, Vuoristo P. Effect of powder type and composition on structure and mechanical properties of Cu + Al2O3 coatings prepared by using low-pressure cold spray process [J]. J. Therm. Spray Technol., 2010, 19: 1081
16 Vaz R F, Garfias A, Albaladejo V, et al. A review of advances in cold spray additive manufacturing [J]. Coatings, 2023, 13(2): 267
17 Liu H J, Fu M K, Pang S Z, et al. Effect of ball-milled feedstock powder on microstructure and mechanical properties of Cu-Ni-Al-Al2O3 composite coatings by cold spraying [J]. Coatings, 2023, 13(5): 948
18 Chen J X. Research on structure and properties of cold sprayed aluminum and micro-arc oxidation film on AZ31 magnesium alloy [D]. Changsha: Hunan University, 2019
18 陈金雄. AZ31镁合金冷喷涂铝及微弧氧化膜结构与性能研究 [D]. 长沙: 湖南大学, 2019
19 Qiu X, Tariq N U H, Wang J Q, et al. Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique [J]. Surf. Coat. Technol., 2018, 350: 391
20 Shockley J M, Strauss H W, Chromik R R, et al. In situ tribometry of cold-sprayed Al-Al2O3 composite coatings [J]. Surf. Coat. Technol., 2013, 215: 350
21 Yu M, Suo X K, Li W Y, et al. Microstructure, mechanical property and wear performance of cold sprayed Al5056/SiCp composite coatings: effect of reinforcement content [J]. Appl. Surf. Sci., 2014, 289: 188
22 Liu H H, Tariq N U H, Zhao F, et al. Influence of irregular Al2O3 content on electrical conductivity, adhesion strength, and tribological properties of cold sprayed Al-Al2O3 coatings on polyether ether ketone substrate [J]. J. Mater. Eng. Perform., 2024, 33(1): 79
23 Dayani S B, Shaha S K, Ghelichi R, et al. The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy [J]. Surf. Coat. Technol., 2018, 337: 150
24 Zhao X L, Huang C B, Yu X J, et al. An arbitrary Lagrangian-Eulerian discontinuous Galerkin method for two-dimensional compressible flows on adaptive quadrilateral meshes [J]. Int. J. Numer. Method. Fluids, 2023, 95(5): 796
25 Löhner R, Li L Q, Soto O A, et al. An arbitrary Lagrangian-Eulerian method for fluid-structure interactions due to underwater explosions [J]. Int. J. Numer. Method. Heat Fuid Flow, 2023, 33(6): 2308
26 Zhang Z J, Zhang B, Dang X H, et al. Effect of Al2O3 particle content on microstructure and mechanical properties of 1060Al/Al-Al2O3 composites fabricated by cold spraying and accumulative roll bonding [J]. J. Mater. Res. Technol., 2023, 26: 2941
27 Zhou H X, Li C X, Bennett C, et al. Numerical analysis of deformation behavior and interface bonding of Ti6Al4V particle after subsequent impact during cold spraying [J]. J. Therm. Spray Technol., 2021, 30: 1093
28 Fernandez R, Jodoin B. Cold spray aluminum-alumina cermet coatings: effect of alumina content [J]. J. Therm. Spray Technol., 2018, 27: 603
29 Yin X C. Study on dry sliding friction and wear properties of ZM6 and ZK60 magnesium alloys [D]. Yanji: Yanbian University, 2019
29 尹相春. ZM6和ZK60镁合金干式滑动摩擦磨损性能研究 [D]. 延吉: 延边大学, 2019
30 Shi Z K, Xu L P, Deng C M, et al. Effects of frequency on the fretting wear behavior of aluminum bronze coatings [J]. Surf. Coat. Technol., 2023, 457: 129306
31 Zhou W T, Kong D J. Influence of Al2O3 mass fractions on microstructure, oxidation resistance and friction-wear behaviors of CoCrAlYTaSi coatings [J]. Surf. Coat. Technol., 2019, 379: 125058
32 Tang Y H, Ji P F, Li B, et al. Effect of loading on microstructure and friction and wear behavior of an austenite lightweight steel [J]. Tribol. Int., 2023, 177: 108006
33 Am R, Kaleemulla M, Doddamani S, et al. Material characterization of SiC and Al2O3-reinforced hybrid aluminum metal matrix composites on wear behavior [J]. Adv. Compos. Letta., 2019, 28: 1
34 Mégret A, Prince L, Olivier M G, et al. Tribo- and tribocorrosion properties of magnesium AZ31 alloy [J]. Coatings, 2023, 13(2): 448
35 Ye T, Jia Z Y, Ma J W, et al. Mechanical and tribological properties of 5A06 aluminum alloy at low temperature [J]. Surf. Topogr. Metrol. Prop., 2023, 11(1): 015011
36 Neog S P, Kumar A R, Bakshi S D, et al. Understanding the complexities of dry sliding wear behaviour of steels [J]. Mater. Sci. Technol., 2021, 37(5): 504
37 Yang C C, Su Y F, Liang S Y, et al. Simulation of wire bonding process using explicit FEM with ALE remeshing technology [J]. J. Mech., 2020, 36(1): 47
doi: 10.1017/jmech.2019.25
[1] 崔捷, 李旭东, 杜宪, 李淑波, 杜文博. 轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响[J]. 材料研究学报, 2024, 38(9): 641-650.
[2] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[3] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[4] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[5] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[6] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[7] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[8] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[9] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[10] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[11] 陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810.
[12] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[13] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[14] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[15] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.