Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 373-378    DOI: 10.11901/1005.3093.2023.225
  研究论文 本期目录 | 过刊浏览 |
金属有机框架多孔玻璃agSALEM-2的制备
谭依玲1,2, 李诗纯2(), 孙杰2
1.西南科技大学 环境友好能源材料国家重点实验室 绵阳 621010
2.中国工程物理研究院化工材料研究所 绵阳 621900
Preparation of Metal-organic Framework Porous Glass agSALEM-2
TAN Yiling1,2, LI Shichun2(), SUN Jie2
1.State Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
2.Institute of Chemical Materials, Academy of Engineering Physics, Mianyang 621900, China
引用本文:

谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
Yiling TAN, Shichun LI, Jie SUN. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. Chinese Journal of Materials Research, 2024, 38(5): 373-378.

全文: PDF(4431 KB)   HTML
摘要: 

选择MOF晶体SALEM-2作为制备多孔玻璃的前驱体,将其熔融淬火制备出多孔玻璃agSALEM-2。X射线衍射(XRD)、扫描电镜(SEM)和热重(TGA)等分析结果表明,SALEM-2熔融前依次经历热致非晶化、重结晶和分解。SALEM-2中的部分有机配体2-甲基咪唑(MIm)分解,产生的缺陷使其熔点降低。在淬火过程中MIm阻碍了框架结构的重新形成,从而部分保留了液态下的孔结构,淬火速率越高液态下的多孔结构保留的越多。agSALEM-2的BET比表面积最高可达150 m2/g。

关键词 无机非金属材料玻璃与非晶MOF玻璃熔融淬火多孔玻璃N2吸附    
Abstract

Metal-organic framework (MOF) glass with characteristics of porous and easy forming, shows broad application prospects in the fields of adsorption and separation. However, the porous structure will collapse and deform during the formation of MOF glass, which limits the separation performance of MOF glass, besides very few MOFs have been found so far. In this work, a novel MOF glass agSALEM-2 was prepared via successively melting and quenching processes, with MOF crystal SALEM-2 as precursor, which not only has a fusible chemical composition but also an abundant pore structure. The prepared melting-quenching process of SALEM-2 was investigated by means of XRD, SEM and TIG etc. The results show that before melting, the SALEM-2 undergoes thermally amorphization, recrystallization and decomposition processes sequentially; during melting, a part of the organic ligands 2-methylimidazole (MIm) in SALEM-2 decomposes to generate defects, leading to a lower melting point; during quenching, the MIm can prevent the re-formation of the framework structure and thus partially preserves its porous structure in the liquid state, the higher the quenching rate, the higher the degree of retention of the porous structure in the liquid state. Thus, the porous glass agSALEM-2 with a BET specific surface area of up to 150 m2/g was successfully prepared. This study enriches the variety of MOF glass materials and provides an effective strategy to enhance the porosity of MOF glasses.

Key wordsinorganic non-metallic materials    glass and amorphous    MOF glass    melt-quenching    porous    N2 adsorption
收稿日期: 2023-04-13     
ZTFLH:  TQ420.6+4  
基金资助:国家自然科学基金(21606212)
通讯作者: 李诗纯,副研究员,lishichun@caep.cn,研究方向为材料非周期性结构演化及调控
Corresponding author: LI Shichun, Tel: 18281436965, E-mail: lishichun@caep.cn
作者简介: 谭依玲,女,1995年生,博士生
图1  SALEM-2和agSALEM-2的晶体结构和化学组成
图2  SALEM-2的熔融淬火过程
图3  SALEM-2熔融过程中的TG-DSC曲线
图4  SALEM-2、淬火产物与模拟ZIF-zni的XRD谱
图5  在不同淬火温度和冷却速率条件下制备的agSALEM-2的XRD谱
图6  淬火温度845 K时冷却速率对agSALEM-2密度的影响
图7  淬火温度845 K时冷却速率不同的条件下agSALEM-2玻璃的吸附等温线和比表面积随冷却速率的变化
MOF glassPreparation methodsBET specific surface area [Ref.]
Ti-BPPSol-gel267 [22]
Ti-BPASol-gel330 [22]
Ti-FumSol-gel923 [23]
agZIF-4(Zn)Melting-quenching2.921 [24]
agZIF-62Melting-quenching0.012 [24]
agTIF-4Melting-quenching0.094 [24]
agZn(Im)2 (GIS)Melting-quenching0.450 [24]
agSALEM-2Melting-quenching150 [This work]
表1  MOF玻璃BET比表面积
1 McHugh L N, Bennett T D. Introducing porosity into metal-organic framework glasses[J]. J. Mater. Chem., 2022, 10A(37): 19552
2 Stepniewska M, Januchta K, Zhou C, et al. Observation of indentation-induced shear bands in a metal-organic framework glass[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(19): 10149
doi: 10.1073/pnas.2000916117 pmid: 32341165
3 Tao H Z, Bennett T D, Yue Y Z. Melt‐quenched hybrid glasses from metal-organic frameworks[J]. Adv. Mater., 2017, 29(20): 1601705
4 Frentzel-Beyme L, Kolodzeiski P, Weiß J B, et al. Quantification of gas-accessible microporosity in metal-organic framework glasses[J]. Nat. Commun., 2022, 13: 7750
doi: 10.1038/s41467-022-35372-5 pmid: 36517486
5 Li S C, Limbach R, Longley L, et al. Mechanical properties and processing techniques of bulk metal-organic framework glasses[J]. J. Am. Chem. Soc., 2019, 141(2): 1027
doi: 10.1021/jacs.8b11357 pmid: 30582804
6 Gaillac R, Pullumbi P, Beyer K A, et al. Liquid metal-organic frameworks[J]. Nat. Mater., 2017, 16(11): 1149
doi: 10.1038/nmat4998 pmid: 29035353
7 Fonseca J, Gong T H, Jiao L, et al. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses[J]. J. Mater. Chem., 2021, 9A(17): 10562
8 Wang Y H, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angew. Chem., 2020, 132(11): 4395
9 Hou J W, Chen P, Shukla A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses[J]. Science, 2021, 374(6567): 621
doi: 10.1126/science.abf4460 pmid: 34709926
10 Horike S, Umeyama D, Inukai M, et al. Coordination-network-based ionic plastic crystal for anhydrous proton conductivity[J]. J. Am. Chem. Soc., 2012, 134(18): 7612
doi: 10.1021/ja301875x pmid: 22512400
11 Bumstead A M, Gómez M L R, Thorne M F, et al. Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks[J]. CrystEngComm, 2020, 22(21): 3627
12 Hou J W, Ashling C W, Collins S M, et al. Metal-organic framework crystal-glass composites[J]. Nat. Commun., 2019, 10(1): 2580
doi: 10.1038/s41467-019-10470-z pmid: 31189892
13 Shi Q, Xu W J, Huang R K, et al. Zeolite CAN and AFI-type zeolitic imidazolate frameworks with large 12-membered ring pore openings synthesized using bulky amides as structure-directing agents[J]. J. Am. Chem. Soc., 2016, 138(50): 16232
doi: 10.1021/jacs.6b11197 pmid: 27936672
14 Longley L, Collins S M, Li S C, et al. Flux melting of metal-organic frameworks[J]. Chem. Sci., 2019, 10(12): 3592
doi: 10.1039/c8sc04044c pmid: 30996951
15 Frentzel-Beyme L, Kloß M, Kolodzeiski P, et al. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption[J]. J. Am. Chem. Soc., 2019, 141(31): 12362
doi: 10.1021/jacs.9b05558 pmid: 31288513
16 Gandara-Loe J, Missyul A, Fauth F, et al. New insights into the breathing phenomenon in ZIF-4[J]. J. Mater. Chem., 2019, 7A(24): 14552
17 Frentzel-Beyme L, Kloß M, Pallach R, et al. Porous purple glass-a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework[J]. J. Mater. Chem., 2019, 7A(3): 985
18 Liang W B, Ricco R, Maddigan N K, et al. Control of structure topology and spatial distribution of biomacromolecules in protein@ZIF-8 biocomposites[J]. Chem. Mater., 2018, 30(3): 1069
19 Karagiaridi O, Lalonde M B, Bury W, et al. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers[J]. J. Am. Chem. Soc., 2012, 134(45): 18790
doi: 10.1021/ja308786r pmid: 23088345
20 Bennett T D, Keen D A, Tan J C, et al. Thermal amorphization of zeolitic imidazolate frameworks[J]. Angew. Chem., 2011, 123(13): 3123
21 Hu J B, Liu Y, Liu J, et al. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: The significant role of functional groups[J]. Fuel, 2017, 200: 244
22 Zhao Y B, Lee S Y, Becknell N, et al. Nanoporous transparent MOF glasses with accessible internal surface[J]. J. Am. Chem. Soc., 2016, 138(34): 10818
doi: 10.1021/jacs.6b07078 pmid: 27539546
23 Xu W T, Hanikel N, Lomachenko K A, et al. High-porosity metal-organic framework glasses[J]. Angew. Chem., 2023, 135: e202300003
24 Bennett T D, Yue Y Z, Li P, et al. Melt-quenched glasses of metal-organic frameworks[J]. J. Am. Chem. Soc., 2016, 138(10): 3484
doi: 10.1021/jacs.5b13220 pmid: 26885940
[1] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[2] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[3] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[4] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[5] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[6] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[7] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[8] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[9] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[10] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[12] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[13] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[14] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[15] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.