|
|
耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能 |
徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山( ), 王兵( ), 王应德 |
国防科技大学空天科学学院 新型陶瓷纤维及其复合材料重点实验室 长沙 410073 |
|
Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability |
XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan( ), WANG Bing( ), WANG Yingde |
Science and Technology and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China |
引用本文:
徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
Hui XU,
Peiyuan ZHANG,
Nana XU,
Tao LIU,
Xiaoshan ZHANG,
Bing WANG,
Yingde WANG.
Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. Chinese Journal of Materials Research, 2024, 38(5): 365-372.
1 |
Su L, Wang H J, Niu M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation[J]. Sci. Adv., 2020, 6(26): eaay6689
|
2 |
Si Y, Wang X Q, Dou L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Sci. Adv., 2018, 4(4): eaas8925
|
3 |
Zhang X X, Wang F, Dou L, et al. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300oC[J]. ACS Nano, 2020, 14(11): 15616
|
4 |
Mao X, Bai Y, Yu J Y, et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. J. Am. Ceram. Soc., 2016, 99(8): 2760
|
5 |
Si Y S, Mao X, Zheng H X, et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation[J]. RSC Adv., 2015, 5(8): 6027
|
6 |
Nakane K, Seto M, Irie S, et al. Alumina nanofibers obtained from poly(vinyl alcohol)/boehmite nanocomposites[J]. J. Appl. Polym. Sci., 2011, 121(3): 1774
|
7 |
Xian L, Zhang Y, Wu Y J, et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors[J]. Ceram. Int., 2020, 46(2): 1869
|
8 |
Zhang J P, Li B C, Li L X, et al. Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose[J]. J. Mater. Chem., 2016, 4A(6): 2069
|
9 |
Peng Y, Xie Y S, Wang L, et al. High-temperature flexible, stren-gth and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation[J]. J. Eur. Ceram. Soc., 2021, 41(2): 1471
|
10 |
Castkova K, Maca K, Sekaninova J, et al. Electrospinning and thermal treatment of yttria doped zirconia fibres[J]. Ceram. Int., 2017, 43(10): 7581
|
11 |
Yang S Y, Lee J H, Kim J J, et al. Sintering behavior of Y-doped ZrO2 ceramics: the effect of Al2O3 and Nb2O5 addition[J]. Solid State Ionics, 2004, 172: 413
|
12 |
Ślosarczyk A. Recent advances in research on the synthetic fiber based silica aerogel nanocomposites[J]. Nanomaterials, 2017, 7(2): 44
|
13 |
Singh S, Singh V, Vijayakumar M, et al. Electrospun ZrO2 fibers obtained from polyvinyl alcohol/zirconium n-propoxide composite fibers processed through halide free sol-gel route using acetic acid as a stabilizer[J]. Mater. Lett., 2014, 115: 64
|
14 |
Liu C, Pan R Q, Hong C Q, et al. Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer-derived ceramics[J]. J. Eur. Ceram. Soc., 2016, 36(3): 395
|
15 |
Kim J, Lee J, Ha J H, et al. Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes[J]. Ceram. Int., 2019, 45(14): 17696
|
16 |
Liu B X, Gao M, Liu X C, et al. Thermally stable nanoporous ZrO2/SiO2 hybrid aerogels for thermal insulation[J]. ACS Appl. Nano Mater., 2019, 2(11): 7299
|
17 |
Yu Z C, Xu C H, Yuan K K, et al. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal[J]. J. Hazard. Mater., 2018, 346: 82
|
18 |
Shin S, Wang Q Y, Luo J, et al. Advanced materials for high-temperature thermal transport[J]. Adv. Funct. Mater., 2020, 30(8): 1904815
|
19 |
Wang T C, Zhang Z H, Dai C H, et al. Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template[J]. Ceram. Int., 2019, 45(6): 7120
|
20 |
Wang T C, Yu Q K, Kong J, et al. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template[J]. Ceram. Int., 2017, 43(12): 9296
|
21 |
Shi S Y, Yuan K K, Xu C H, et al. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber[J]. Ceram. Int., 2018, 44(12): 14013
|
22 |
Zu G Q, Shen J, Wang W Q, et al. Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts[J]. Chem. Mater., 2014, 26(19): 5761
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|