Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 365-372    DOI: 10.11901/1005.3093.2023.232
  研究论文 本期目录 | 过刊浏览 |
耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能
徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山(), 王兵(), 王应德
国防科技大学空天科学学院 新型陶瓷纤维及其复合材料重点实验室 长沙 410073
Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability
XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan(), WANG Bing(), WANG Yingde
Science and Technology and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
引用本文:

徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
Hui XU, Peiyuan ZHANG, Nana XU, Tao LIU, Xiaoshan ZHANG, Bing WANG, Yingde WANG. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. Chinese Journal of Materials Research, 2024, 38(5): 365-372.

全文: PDF(11392 KB)   HTML
摘要: 

将静电纺丝技术与先驱体转化法相结合,制备出耐高温(1300℃)性能较好的SiO2/ZrO2纳米纤维膜。这种SiO2/ZrO2-0.5纳米纤维由无定形SiO2相和t-ZrO2纳米晶组成,其平均直径为495.8 ± 45.5 nm。SiO2/ZrO2-0.5纳米纤维膜具有较高的拉伸强度(4.88 ± 0.27 MPa)、良好的柔性和优异的高温隔热性能,其1000℃热导率仅为0.167 W·m-1·K-1,显著低于传统陶瓷隔热纤维膜。

关键词 无机非金属材料静电纺丝SiO2/ZrO2纳米纤维膜耐高温性能隔热性能    
Abstract

The high strength, high temperature resistance and high thermal shock resistance of ceramic nanofibers are essential to high temperature thermal insulation materials, which have good application prospects in aerospace and other fields. The low thermal conductivity and good infrared refractive index of ZrO2 nanofibers have attracted much attention in the field of thermal insulation. However, the poor thermal stability (≤ 1200oC) of ZrO2 nanofiber limits their utilization in the field of high-temperature thermal insulation. In this study, a novel membrane of SiO2/ZrO2-0.5 nanofibers (d = 495.8 ± 45.5 nm) with high temperature resistance up to 1300oC was prepared by combining electrospinning technology and preceramic polymer pyrolysis method, the SiO2/ZrO2-0.5 nanofiber composed of amorphous SiO2 phase and t-ZrO2 nanocrystalline. The fabricated SiO2/ZrO2-0.5 nanofiber membrane shows high tensile strength (4.88 ± 0.27 MPa), good flexibility and excellent thermal insulation performance at high temperatures. Finally, it is worth noting in particular that the thermal conductivity of SiO2/ZrO2-0.5 nanofiber membrane is only 0.167 W·m-1·K-1 at 1000oC, which is significantly lower than those of the known traditional ceramic fiber membranes.

Key wordsinorganic non-metallic materials    electrospinning    SiO2/ZrO2 nanofiber membranes    high temperature resistance    thermal insulation performance
收稿日期: 2023-04-19     
ZTFLH:  TQ343  
基金资助:湖南省自然科学基金(2021JJ20048);重点实验室稳定支持科研项目(WDZC20235250501)
通讯作者: 张晓山,博士,zhangxiaoshan15@nudt.edu.cn,研究方向为陶瓷先驱体与陶瓷纤维;
王兵,副研究员,bingwang@nudt.edu.cn,研究方向为陶瓷先驱体与陶瓷纤维
Corresponding author: ZHANG Xiaoshan, Tel: 13739086732, E-mail: zhangxiaoshan15@nudt.edu.cn
WANG Bing, Tel: 13687399626, E-mail: bingwang@nudt.edu.cn
作者简介: 徐 汇,男,1999年生,硕士生
图1  强度测试用样品的尺寸和光学照片
图2  不同PZSO纤维的FTIR光谱和不同PZSO溶液的粘度和电导率
图3  SiO2/ZrO2纳米纤维SEM照片和纤维直径的分布
SamplesSiO2/ZrO2-2SiO2/ZrO2-1SiO2/ZrO2-0.5
Zr content6.710.412.6
表1  纳米纤维内锆元素的含量(质量分数,%)
图4  SiO2/ZrO2纳米纤维的XRD谱
图5  SiO2/ZrO2-0.5纳米纤维的TEM照片、高分辨TEM照片和EDS元素分布图
图6  SiO2/ZrO2纳米纤维的XPS全谱图以及Zr3d、 Si2p、 O1s 的分峰拟合图
图7  SiO2/ZrO2纳米纤维膜的拉伸强度-应变曲线、抗拉强度、真密度和体密度以及展示力学性能的光学照片
图8  SiO2/ZrO2-0.5纳米纤维膜的热重曲线、加热处理后的SEM图像、在2.5~5 μm的e值以及与其他陶瓷纤维膜热导率的比较
1 Su L, Wang H J, Niu M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation[J]. Sci. Adv., 2020, 6(26): eaay6689
2 Si Y, Wang X Q, Dou L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Sci. Adv., 2018, 4(4): eaas8925
3 Zhang X X, Wang F, Dou L, et al. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300oC[J]. ACS Nano, 2020, 14(11): 15616
4 Mao X, Bai Y, Yu J Y, et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. J. Am. Ceram. Soc., 2016, 99(8): 2760
5 Si Y S, Mao X, Zheng H X, et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation[J]. RSC Adv., 2015, 5(8): 6027
6 Nakane K, Seto M, Irie S, et al. Alumina nanofibers obtained from poly(vinyl alcohol)/boehmite nanocomposites[J]. J. Appl. Polym. Sci., 2011, 121(3): 1774
7 Xian L, Zhang Y, Wu Y J, et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors[J]. Ceram. Int., 2020, 46(2): 1869
8 Zhang J P, Li B C, Li L X, et al. Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose[J]. J. Mater. Chem., 2016, 4A(6): 2069
9 Peng Y, Xie Y S, Wang L, et al. High-temperature flexible, stren-gth and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation[J]. J. Eur. Ceram. Soc., 2021, 41(2): 1471
10 Castkova K, Maca K, Sekaninova J, et al. Electrospinning and thermal treatment of yttria doped zirconia fibres[J]. Ceram. Int., 2017, 43(10): 7581
11 Yang S Y, Lee J H, Kim J J, et al. Sintering behavior of Y-doped ZrO2 ceramics: the effect of Al2O3 and Nb2O5 addition[J]. Solid State Ionics, 2004, 172: 413
12 Ślosarczyk A. Recent advances in research on the synthetic fiber based silica aerogel nanocomposites[J]. Nanomaterials, 2017, 7(2): 44
13 Singh S, Singh V, Vijayakumar M, et al. Electrospun ZrO2 fibers obtained from polyvinyl alcohol/zirconium n-propoxide composite fibers processed through halide free sol-gel route using acetic acid as a stabilizer[J]. Mater. Lett., 2014, 115: 64
14 Liu C, Pan R Q, Hong C Q, et al. Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer-derived ceramics[J]. J. Eur. Ceram. Soc., 2016, 36(3): 395
15 Kim J, Lee J, Ha J H, et al. Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes[J]. Ceram. Int., 2019, 45(14): 17696
16 Liu B X, Gao M, Liu X C, et al. Thermally stable nanoporous ZrO2/SiO2 hybrid aerogels for thermal insulation[J]. ACS Appl. Nano Mater., 2019, 2(11): 7299
17 Yu Z C, Xu C H, Yuan K K, et al. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal[J]. J. Hazard. Mater., 2018, 346: 82
18 Shin S, Wang Q Y, Luo J, et al. Advanced materials for high-temperature thermal transport[J]. Adv. Funct. Mater., 2020, 30(8): 1904815
19 Wang T C, Zhang Z H, Dai C H, et al. Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template[J]. Ceram. Int., 2019, 45(6): 7120
20 Wang T C, Yu Q K, Kong J, et al. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template[J]. Ceram. Int., 2017, 43(12): 9296
21 Shi S Y, Yuan K K, Xu C H, et al. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber[J]. Ceram. Int., 2018, 44(12): 14013
22 Zu G Q, Shen J, Wang W Q, et al. Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts[J]. Chem. Mater., 2014, 26(19): 5761
[1] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[2] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[3] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[4] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[5] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[6] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[7] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[8] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[9] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[10] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[12] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[13] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[14] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[15] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.