Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 379-389    DOI: 10.11901/1005.3093.2023.238
  研究论文 本期目录 | 过刊浏览 |
酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能
王琰1, 张昊2, 常娜3, 王海涛1()
1.天津工业大学环境科学与工程学院 天津 300387
2.天津工业大学纺织科学与工程学院 天津 300387
3.天津工业大学化学工程与技术学院 天津 300387
Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes
WANG Yan1, ZHANG Hao2, CHANG Na3, WANG Haitao1()
1.School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
2.School of Textile Science and Engineering, TianGong University, Tianjin 300387, China
3.School of Chemical Engineering and Technology, TianGong University, Tianjin 300387, China
引用本文:

王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
Yan WANG, Hao ZHANG, Na CHANG, Haitao WANG. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. Chinese Journal of Materials Research, 2024, 38(5): 379-389.

全文: PDF(5868 KB)   HTML
摘要: 

以粉煤灰(CFA)为原料、以HCl和NaOH为改性剂制备改性粉煤灰多孔吸附剂(MCFA),使用SEM观察、XRD谱、BET、FT-IR、XPS等手段表征改性前后CFA的结构,研究了MCFA的投加量和染料的pH值对染料吸附性能的影响并揭示了吸附机理。结果表明,CFA改性后MCFA的表面粗糙多孔,比表面积从5.2 m2/g增大到32.0 m2/g,其活性提高和吸附位点增多使其吸附性能提高。在吸附剂投加量为2 mL和染料的初始浓度为100 mg/L的条件下,对碱性品红和孔雀石绿的最大去除率可达99%。MCFA对印染废水的吸附过程包括物理吸附和化学吸附,用Freundlich模型能很好地加以描述。用准二级动力学比准一级动力学可描述对4种染料的吸附行为。

关键词 无机非金属材料粉煤灰改性染料废水脱色率吸附    
Abstract

Coal fly ash (CFA) was modified with HCl and NaOH solutions as to produce a novel modified porous adsorbent (MCFA). The CFA and MCFA were characterized by SEM、BET、FT-IR、XRD、XPS. Meanwhile, simulated wastewaters containing dyes, such as basic violet, basic green, Congo red, and methyl violet, respectively were prepared, then the effect of the MCFA dosage on the adsorption capacity for dyes, and the effect of pH value of wastewaters on adsorption capacity for dyes were examined. The characterization results showed that the surface of MCFA is rather rough and porous, with a specific surface area of 32.0 m2/g, superior to 5.2 m2/g of the original CFA, accordingly its adsorption performance may be enhanced due to the increasing active and adsorptive sites on the surface. The MCFA has excellent adsorption effect on the desired four dyes. The maximum removal efficiency of basic violet and basic green all reached 99%, respectively by using adsorbent dosage of 2 mL for a given dye solution of 100 mg/L. By fitting data with isothermal adsorption and kinetic models, it follows that Freundlich isotherm model was fitted for the adsorption process, and both physical and chemical adsorption are involved in the adsorption process. The adsorption behavior of all four dyes could be described better by pseudo-second-order kinetics rather than pseudo-first-order kinetics, and the adsorption effect was significant, which can be used as an excellent adsorbent in the treatment industry of dye wastewaters.

Key wordsinorganic non-metallic materials    modification of coal fly ash    dye wastewater    decolorization    adsorption
收稿日期: 2023-04-23     
ZTFLH:  O647.33  
基金资助:国家重点研发计划(2023YFE0101000)
通讯作者: 王海涛,教授,wanghaitao@tiangong.edu.cn, 研究方向为新型膜材料、工业废水处理及零排放、海水淡化、环境催化
Corresponding author: WANG Haitao, Tel: (022)83955622, E-mail: wanghaitao@tiangong.edu.cn
作者简介: 王 琰,女,1997年生,硕士生
图1  HCl-NaOH法改性粉煤灰吸附材料的制备流程
DyeMolecular weightStructural formulaWavelength / nm
Basic violet337.85543.88
Basic green364.92564.63
Congo red696.68495.25
Methyl violet379.93584.94
表1  吸附用染料的基本参数
图2  CFA和MCFA的SEM照片
图3  CFA和MCFA样品的孔径分布和氮气吸脱附曲线
SamplesSurface area / m2·g-1N2 quantity amount / cm3·g-1Correlation coefficient (r)Diameter / nm
CFA5.24.5270.9987003.061
MCFA32.042.38720.9999274.900
表2  CFA和MCFA的比表面积和孔径尺寸
图4  CFA和MCFA的红外光谱
图5  CFA和MCFA的X射线衍射谱
图6  CFA和MCFA的XPS谱
图7  CFA的XPS谱
图8  MCFA的XPS谱
图9  不同剂量的MCFA对染料的吸附性能
图10  染料的浓度对其吸附效果的影响
ModelParametersBasic violetBasic greenCongo redMethyl violet
LangmuirKL / L·g-10.00030.00050.00260.0004
qm / mg·g-17.672715.115101.25
R20.27780.84990.96540.2911
FreundlichKF / mg·g-1512.743372.393661.602721.8424
nf0.90151.12422.66520.8997
R20.99080.99030.99020.9909
表3  MCFA吸附4种染液的等温学拟合参数
图11  4种染液的吸附时间对吸附效果的影响
ModelParametersBasic violetBasic greenCongo redMethyl violet
Pseudo-first-orderK1 / min-15.520 × 10-22.223 × 10-12.670 × 10-11.386 × 10-1
qe / mg·g-13.46971.81042.71141.4374
R20.64200.24610.95770.8848
Pseudo-second-orderK2 / g·(mg·min)-11.006 × 10-31.335 × 10-38.5902.469 × 10-4
qe / mg·g-1250.00250.00263.16256.41
R20.99990.99990.98090.9980
表4  MCFA吸附4种染液的动力学拟合参数
图12  在pH值为3~11条件下MCFA对4种染液的吸附量
1 Wang J X, Li J, Zhao S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bull. Chin. Ceram. Soc., 2018, 37(12): 3833
1 王建新, 李 晶, 赵仕宝 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3833
2 Xu S, Yang J L, Ma S J. Research progress in the comprehensive utilization of fly ash[J]. Conser. Utilizat. Miner. Resour., 2021, 41(3): 104
2 徐 硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104
3 Aigbe U O, Ukhurebor K E, Onyancha R B, et al. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review[J]. J. Mater. Res. Technol., 2021, 14: 2751
4 He C X, Fang H L, Jessica, et al. Research progress of printing and dyeing wastewater treatment[J]. Light Text. Ind. Technol., 2021, 50(8): 130
4 何晨曦, 房浩亮, 古丽加衣娜尔·巴合提 等. 印染废水处理研究进展[J]. 轻纺工业与技术, 2021, 50(8): 130
5 Buema G, Lupu N, Chiriac H, et al. Performance assessment of five adsorbents based on fly ash for removal of cadmium ions[J]. J. Mol. Liq., 2021, 333: 115932
6 Dahake R, Tiwari P, Bansiwal A. Multicycle adsorption and desorption for recovery of U(VI) from aqueous solution using oxime modified zeolite-A[J]. J. Radioanal. Nucl. Chem., 2021, 327(1): 133
7 Zhang Y N, Chen Y G, Kang W, et al. Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment[J]. J. Clean. Prod., 2020, 258: 120736
8 Feng P F. Progress and development of high value utilization for coal fly ash from power plant[J]. China Resour. Compreh. Util., 2020, 38(11): 100
8 冯培峰. 电厂粉煤灰高值化利用现状与最新进展[J]. 中国资源综合利用, 2020, 38(11): 100
9 Krishnamoorthy S, Ajala F, Mohammed S M, et al. High adsorption and high catalyst regeneration kinetics observed for Flyash-Fe3O4-Ag magnetic composite for efficient removal of industrial azo reactive dyes from aqueous solution via persulfate activation[J]. Appl. Surf. Sci., 2021, 548: 149265
10 Min X Z, Han C Y, Yang L, et al. Enhancing As(V) and As(III) adsorption performance of low alumina fly ash with ferric citrate modification: Role of FeSiO3 and monosodium citrate[J]. J. Environ. Manage., 2021, 287: 112302
11 Wang Z H, Xu L H, Su N N, et al. Preparation of amino-functionalized fly ash based tobermorite for enhanced removal of Cr(VI)[J]. Environ. Sci. Pollut. Res., 2023, 30: 54547
12 Rosa J M, Fileti A M F, Tambourgi E B, et al. Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by Ultraviolet/Hydrogen peroxide homogeneous photocatalysis[J]. J. Clean. Prod., 2015, 90: 60
13 Sundum T, Szécsényi K M, Kaewtatip K. Preparation and characterization of thermoplastic starch composites with fly ash modified by planetary ball milling[J]. Carbohydr. Polym., 2018, 191: 198
14 Wu M, Wang X Q, Mao L X, et al. Experimental study on Cd(Ⅱ) and Cu(Ⅱ) of adsorbent prepared by mixing fly ash and domestic sludge[J]. Appl. Chem. Ind., 2023, 52: 689
14 吴 蒙, 王晓青, 毛礼鑫 等. 粉煤灰与生活污泥混合制备吸附剂对Cd(Ⅱ)和Cu(Ⅱ)的试验研究[J]. 应用化工, 2023, 52: 689
15 Li F H, Wu W H, Li R Y, et al. Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution: Experimental and modeling[J]. Appl. Clay Sci., 2016, 132-133: 343
16 Yu R T, Yang Y, Ma X, et al. The mechanism of acid modification of coal fly ash for the removal of phosphate from wastewater[J]. J. Ceram., 2017, 38(1): 82
16 余荣台, 杨 勇, 马 湘 等. 酸改性粉煤灰去除废水中磷酸盐的机理解析[J]. 陶瓷学报, 2017, 38(1): 82
17 Dubey S, Uma, Sujarittanonta L, et al. Application of fly ash for adsorptive removal of malachite green from aqueous solutions[J]. Desalin. Water Treat., 2015, 53(1): 91
18 Hałas P, Kołodyńska D, Płaza A, et al. Modified fly ash and zeolites as an effective adsorbent for metal ions from aqueous solution[J]. Adsorpt. Sci. Technol., 2017, 35(5-6): 519
19 Li K Q, Li B Y. Effect of modification with nitrogen functional groups on structure and adsorption performence of biomass active carbon[J]. Chin. J. Mater. Res., 2018, 32(12): 929
doi: 10.11901/1005.3093.2018.190
19 李坤权, 李博宇. 介孔蔗渣碳的氮官能化改性及其对Hg2+吸附的影响[J]. 材料研究学报, 2018, 32(12): 929
doi: 10.11901/1005.3093.2018.190
20 Nguyen T C, Tran T D M, Dao V B, et al. Using modified fly ash for removal of heavy metal ions from aqueous solution[J]. J. Chem., 2020, 2020: 8428473
21 Wei L D, Zhang W B, Liu M D. Study on the adsorption performance of modified fly ash on sulfides in water[J]. Yunnan Chem. Technol., 2018, 45(5): 30
21 魏丽丹, 张文斌, 刘美多. 改性粉煤灰对水中硫化物吸附性能研究[J]. 云南化工, 2018, 45(5): 30
22 Ebadollahzadeh H, Zabihi M. Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina[J]. Mater. Chem. Phys., 2020, 248: 122893
23 Cho H, Oh D, Kim K. A study on removal characteristics of heavy metals from aqueous solution by fly ash[J]. J. Hazard. Mater., 2005, 127(1-3): 187
pmid: 16125307
24 Guo X L, Wu L, Shi H S. Effects of different heavy metals on fly ash-based geopolymer[J]. Chin. J. Mater. Res., 2017, 31(6): 437
doi: 10.11901/1005.3093.2016.533
24 郭晓潞, 伍 亮, 施惠生. 不同重金属对粉煤灰基地聚合物的影响作用[J]. 材料研究学报, 2017, 31(6): 437
doi: 10.11901/1005.3093.2016.533
25 Álvarez-Ayuso E, Querol X, Plana F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J]. J. Hazard. Mater., 2008, 154(1-3): 175
26 Wang N N, Zhao Q, Xu H, et al. Adsorptive treatment of coking wastewater using raw coal fly ash: Adsorption kinetic, thermodynamics and regeneration by Fenton process[J]. Chemosphere, 2018, 210: 624
doi: S0045-6535(18)31331-6 pmid: 30031346
27 Bai L, Xu W. Study on technology and adsorption properties of modified fly ash by microwave chemical method[J]. Chem. Enterp. Manage., 2022, (36): 152
27 白 林, 许 玮. 微波化学法改性粉煤灰的工艺及吸附性能研究[J]. 化工管理, 2022, (36): 152
28 Chen B, Long F X, Chen S J, et al. Magnetic chitosan biopolymer as a versatile adsorbent for simultaneous and synergistic removal of different sorts of dyestuffs from simulated wastewater[J]. Chem. Eng. J., 2020, 385: 123926
29 Huang X R, Zhao H H, Zhang G B, et al. Potential of removing Cd(II) and Pb(II) from contaminated water using a newly modified fly ash[J]. Chemosphere, 2020, 242: 125148
30 Chen M, Liu J B, Kitiphatpiboon N, et al. Zn-VOx-Co nanosheets with amorphous/crystalline heterostructure for highly efficient hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 432: 134329
31 Wang T T, Zhou W, Jin Z N, et al. Study on fly ash as catalyst carrier[J]. Shanxi Chem. Ind., 2022, 42(2): 19
31 王涛涛, 周 文, 金震楠 等. 以粉煤灰作为催化剂载体的研究[J]. 山西化工, 2022, 42(2): 19
32 Xie J Y, Zhao S X, Chen Z L, et al. Research progress on preparation of adsorbent based on fly ash and its application in the removal of heavy metals in water[J]. Environ. Sci. Technol., 2023, 46(suppl.1): 116
32 谢静怡, 赵晟锌, 陈忠林 等. 粉煤灰基吸附剂去除水中重金属的研究进展[J]. 环境科学与技术, 2023, 46(增刊1): 116
33 Bhatt A, Priyadarshini S, Mohanakrishnan A A, et al. Physical, chemical, and geotechnical properties of coal fly ash: A global review[J]. Case Stud. Constr. Mater., 2019, 11: e00263
34 Shang Z B, Zhang L W, Zhao X Y, et al. Removal of Pb(II), Cd(II) and Hg(II) from aqueous solution by mercapto-modified coal gangue[J]. J. Environ. Manage., 2019, 231: 391
doi: S0301-4797(18)31206-4 pmid: 30368148
35 Supelano G I, Cuaspud J A G, Moreno-Aldana L C, et al. Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue[J]. Fuel, 2020, 263: 116800
36 Hong M, Yu L Y, Wang Y D, et al. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture[J]. Chem. Eng. J., 2019, 359: 363
doi: 10.1016/j.cej.2018.11.087
37 Chakraborty S, Mukherjee A, Das S, et al. Study on isotherm, kinetics, and thermodynamics of adsorption of crystal violet dye by calcium oxide modified fly ash[J]. Environ. Eng. Res., 2021, 26(1): 190372
[1] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[2] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[3] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[4] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[5] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[6] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[7] 翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
[8] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[10] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[15] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.