Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (5): 343-352    DOI: 10.11901/1005.3093.2021.300
  研究论文 本期目录 | 过刊浏览 |
热处理工艺对高成型性0.1%C-3%Mn中锰钢组织和性能的影响
周永浪, 王官涛, 王立军(), 刘春明
东北大学材料科学与工程学院 沈阳 110819
Effect of Heat Treatment Process on Microstructure and Properties of a 0.1%C-3% Mn Medium Manganese Steel of High-formability
ZHOU Yonglang, WANG Guantao, WANG Lijun(), LIU Chunming
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

周永浪, 王官涛, 王立军, 刘春明. 热处理工艺对高成型性0.1%C-3%Mn中锰钢组织和性能的影响[J]. 材料研究学报, 2022, 36(5): 343-352.
Yonglang ZHOU, Guantao WANG, Lijun WANG, Chunming LIU. Effect of Heat Treatment Process on Microstructure and Properties of a 0.1%C-3% Mn Medium Manganese Steel of High-formability[J]. Chinese Journal of Materials Research, 2022, 36(5): 343-352.

全文: PDF(24548 KB)   HTML
摘要: 

研究了0.1%C-3%Mn中锰钢的热膨胀模拟相变行为和一步法与二步法ART处理对其显微组织和力学性能的影响。结果表明,二步法ART处理比一步法可产生更多的残留奥氏体,可显著改善钢的成型性能。将实验钢的热轧态试样在740℃预处理后再在660℃~680℃进行ART处理能产生12%~14%的残留奥氏体,使钢的总延伸率高于35%,均匀延伸率高于20%。热处理制度为740℃×0.5 h+670℃×1.0 h的试样具有最佳的综合性能,其屈服强度为470 MPa,抗拉强度为680 MPa,总延伸率为40.7%,均匀延伸率高达25%,冲击吸收功为163 J。

关键词 金属材料中锰钢二步法ART处理显微组织力学性能残留奥氏体    
Abstract

The phase transition behavior of 0.1%C-3%Mn medium manganese steel was studied via thermal simulation with L78RITA automatic phase transformation instrument, meanwhile the effect of one-step and two-step austenite reverted transformation (ART) treatment on the microstructure and mechanical properties of the steel were also investigated. The results show that the two-step ART treatment produces more residual austenite than the one-step ART treatment, which can significantly improve the forming property of the steel. The hot rolled steel samples were pretreated at 740℃ and then heated to different temperatures for ART treatment, and it was found that 12%~14% of the retained austenite could be produced after treatment in temperature range of 660℃~680℃, which made the total elongation higher than 35% and the uniform elongation higher than 20% of the steel respectively. The steel heat treated in conditions of 740℃×0.5 h+670℃×1.0 h has the best comprehensive properties, namely the yield strength is 470 MPa, the tensile strength is 680 MPa, the total elongation is 40.7%, the uniform elongation is up to 25%, and the impact absorption energy is 163 J.

Key wordsmetallic materials    medium manganese steel    two-step ART treatment    microstructure    mechanical properties    retained austenite
收稿日期: 2021-05-11     
ZTFLH:  TG142  
基金资助:国家自然科学基金(51571053)
作者简介: 周永浪,男,1995年生,硕士生
CSiMnPSAlTiN
0.10.33.10.0080.0020.030.020.0041
表1  实验钢的化学成分
图1  实验钢的热轧态显微组织以及热膨胀模拟试样的显微组织和膨胀曲线
图2  在不同温度模拟ART处理1.5 h的实验钢其热膨胀曲线和显微组织
图3  制度为670℃×2.0 h的ART退火处理实验钢的显微组织
图4  二步法ART预处理后实验钢的模拟试样显微组织和冷却过程中的热膨胀曲线
图5  二步法ART处理后实验钢的显微组织
Heat treatment

VAr

/%

Cγ

/%

Rp0.2

/MPa

Rm

/MPa

At

/%

Au

/%

Akv

/J

PSE

/GPa·%

740℃×0.5 h+650℃×1.0 h6.70.6750366834.017.0>25022.71
740℃×0.5 h+660℃×1.0 h12.50.7149268140.724.0>25027.72
740℃×0.5 h+670℃×1.0 h14.10.7047668640.725.022927.92
740℃×0.5 h+680℃×1.0 h14.40.7248778837.322.016329.39
740℃×0.5 h→670℃×1.0 h1.70.61531100020.510%2820.53
表2  实验钢二步法ART处理组织中的残留奥氏体含量和含碳量及其力学性能
图6  二步法ART处理后实验钢的工程应力-应变曲线
图7  实验钢经740℃×0.5 h+670℃×1.0 h处理后的EBSD图
图8  实验钢经740℃×0.5 h+670℃×1.0 h处理后的TEM照片
图9  实验钢经740℃×0.5 h+670℃×1.0 h处理后的STEM照片和EDS面扫描结果
1 Hu H, Xu G, Li W, et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels [J]. Mater. Des., 2015, 84(5): 95
doi: 10.1016/j.matdes.2015.06.133
2 Li X L, Wang Z D, Deng X T, et al. Effect of final temperature after ultrafast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel [J]. Acta Metall. Sin., 2015, 51(7): 784
2 李小琳, 王昭东, 邓想涛 等. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响 [J]. 金属学报, 2015, 51(7): 784
3 Zhou Y X, Song X T, Liang J W, et al. Innovative processing of obtaining nanostructured bainite with high strength-high ductility combination in low carbon-medium-Mn steel: process-structure-property relationship [J]. Mater. Sci. Eng. A, 2018, 718: 267
doi: 10.1016/j.msea.2018.01.120
4 Dong H, Cao W Q, Shi J, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels [J]. Iron & Steel, 2011, 46(06): 1
4 董 瀚, 曹文全, 时 捷 等. 第3代汽车钢的组织与性能调控技术 [J]. 钢铁, 2011, 46(06): 1
5 Li D Z, Zhuang Z H, Shen L Y, et al. Research status and development trend of microstructure control of advanced high strength steel [J]. Heat Treat. Met., 2019, 44(05): 12
5 李大赵, 庄治华, 申丽媛 等. 先进高强钢微观组织调控研究现状及发展趋势 [J]. 金属热处理, 2019, 44(05): 12
6 Vargas V H, Mejía I, Baltazar-Hernández V H, et al. Characterization of resistance spot welded transformation induced plasticity (TRIP) steels with different silicon and carbon contents [J]. Mater. Manuf. Process., 2018, 32: 307
7 Krishana S C, Karthick N K, Jha A K, et al. Effect of hot rolling on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel [J]. J. Mater. Eeg. Perform., 2018, 27(5): 2388
8 Chang Y, Wang C Y, Zhao K M, et al. An introduction to medium-Mn steel: Metallurgy, mechanical properties and warm stamping process [J]. Mater. Des., 2016, 94: 424
doi: 10.1016/j.matdes.2016.01.048
9 Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56(04): 400
9 王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56(04): 400
10 Wang J F, Wang Z G, Wang X D, et al. Strengthening effect of nanoscale precipitation and transformation induced plasticity in a hot rolled copper-containing ferrite-based lightweight steel [J]. Scr. Mater., 2017, 129: 25
doi: 10.1016/j.scriptamat.2016.10.025
11 Ma W G, Zhang Y J, Yang C F, et al. Effect of manganese content on microstructure and mechanical properties of manganese steel [J]. Dev. Appl. Mater., 2020, 35(03): 26
11 马伟刚, 张由景, 杨超飞 等. Mn含量对中锰钢微观组织及力学性能的影响 [J]. 材料开发与应用, 2020, 35(03): 26
12 Wei Y S. Performance and application of the 3rd generation high strength automobile steel [J]. Heat Treat. Met., 2015(12): 34
12 魏元生. 第三代高强度汽车钢的性能与应用 [J]. 金属热处理, 2015(12): 34
13 Wang C, Shi J, Wang C Y, et al. Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing [J]. ISIJ Int., 2011, 51(4): 651
doi: 10.2355/isijinternational.51.651
14 Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite [J]. Mater. Sci. Eng. A, 2017, 688(14): 40
doi: 10.1016/j.msea.2017.01.063
15 Luo L B, Li W, Wang L, et al. Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures [J]. Mater. Sci. Eng. A, 2017, 682(13): 698
doi: 10.1016/j.msea.2016.11.017
16 Lee S, Lee K, Cooman B C D. Observation of the TWIP+TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel [J]. Metall. Mater. Trans. A, 2015, 46(6): 2356
17 Kwon K H, Yi I C, Ha Y, et al. Origin of intergranular fracture in martensitic 8Mn steel at cryogenic temperatures [J]. Scr. Mater., 2013, 69: 420
doi: 10.1016/j.scriptamat.2013.05.042
18 Heo N H, Nam J W, Heo Y U, et al. Grain boundary embrittlement by Mn and eutectoid reaction in binary Fe-12Mn steel [J]. Acta. Mater., 2013, 61: 4022
doi: 10.1016/j.actamat.2013.03.016
19 Xie Z J, Yuan S F, Zhou W H, et al. Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel [J]. Mater. Des., 2014, 59: 193
doi: 10.1016/j.matdes.2014.02.035
20 Zhou W H, Guo H, Xie Z J, et al. High strength low-carbon alloyed steel with good ductility by combining the retained austenite and nano-sized precipitates [J]. Mater. Sci. Eng. A, 2013, 587: 365
doi: 10.1016/j.msea.2013.06.022
21 Sugimoto Koh-ichi, Usui Noboru, Kobayashi Mitsuyuki, et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels [J]. ISIJ Int., 1992, 32(12): 1311
doi: 10.2355/isijinternational.32.1311
22 Sugimoto Koh-ichi, Iida Tsutomu, Sakaguchi Jyunya, et al. Austenite characteristics and tensile properties in a TRIP type bainitic sheet steel [J]. ISIJ Int., 2000, 40(9): 902
doi: 10.2355/isijinternational.40.902
23 Jiang Z H, Wang P, Li D Z, et al. Effects of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel [J]. Acta Metall. Sin., 2015, 51(08): 925
23 蒋中华, 王 培, 李殿中 等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响 [J]. 金属学报, 2015, 51(08): 925
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.