Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 561-570    DOI: 10.11901/1005.3093.2021.196
  研究论文 本期目录 | 过刊浏览 |
多边形铁素体/针状铁素体双相管线钢的应变硬化行为
荀雨1,2, 严伟1, 史显波1(), 章传国3, 单以银1, 杨柯1, 任毅4
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 合肥 230000
3.宝钢集团中央研究院 上海 201900
4.海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel
XUN Yu1,2, YAN Wei1, SHI Xianbo1(), ZHANG Chuanguo3, SHAN Yiyin1, YANG Ke1, REN Yi4
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230000, China
3.Baosteel Central Research Institute, Shanghai 201900, China
4.State Key Laboratory of Metal Materials and Application for Marine Equipment, Anshan 1140009, China
引用本文:

荀雨, 严伟, 史显波, 章传国, 单以银, 杨柯, 任毅. 多边形铁素体/针状铁素体双相管线钢的应变硬化行为[J]. 材料研究学报, 2022, 36(8): 561-570.
Yu XUN, Wei YAN, Xianbo SHI, Chuanguo ZHANG, Yiyin SHAN, Ke YANG, Yi REN. Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel[J]. Chinese Journal of Materials Research, 2022, 36(8): 561-570.

全文: PDF(4596 KB)   HTML
摘要: 

对X70管线钢进行临界区热处理,制备出四种铁素体/针状铁素体(PF/AF)体积分数不同的双相管线钢。用电子背散射衍射(EBSD)分析了PF含量对这种双相管线钢的晶粒尺寸、大角度与小角度晶界的比例以及几何必要位错密度(GND)的影响;通过Hollomon和修正C-J方程分析了这种钢的应力比与应变硬化指数(n值)的关系,以及不同PF体积分数双相管线钢的塑性变形和应变硬化的机理。结果表明,PF/AF双相管线钢的应变硬化能力几乎与应力比无关,而应变硬化指数与均匀延伸率表现出特定的线性关系。随着PF体积分数的提高,这种钢的颈缩点后移且应变硬化行为由两阶段向三阶段转变。PF体积分数的改变,对其第I和第II阶段的应变硬化能力有显著的影响。

关键词 金属材料多边形铁素体/针状铁素体双相钢多边形铁素体体积分数修正C-J分析应变硬化行为    
Abstract

Four polygonal ferrite/acicular ferrite (PF/AF) dual-phase steels with different volume fractions of polygonal ferrite were processed by heat treatment process. The effect of soft phase (polygonal ferrite) ratio on the effective grain size and geometrically necessary dislocation density (GND) was analyzed by electron backscattered diffraction (EBSD). While the relationship between stress ratio and strain hardening exponent (n), as well as the tensile deformation behavior and the relevant strain hardening mechanism of dual-phase pipeline steels of PF/AF dual-phase steels with different PF volume fractions were assessed by means of empirical formulas of the so called Hollomon analysis and modified C-J analysis. The results show that the strain hardening ability of PF/AF dual-phase steel is almost independent of stress ratio, while the strain hardening index has a specific linear relationship with the uniform elongation. With the increase of volume fraction of polygonal ferrite, the necking point moves backward and the strain hardening behavior changes from two-stage to three-stage process. The change of volume fraction of polygonal ferrite has a significant effect on the strain hardening ability of the first and second stages.

Key wordsmetallic materials    polygonal ferrite/acicular ferrite (PF/AF) dual-phase steel    volume fraction of polygonal ferrite    modified C-J analysis    strain hardening behavior
收稿日期: 2021-03-22     
ZTFLH:  TG430.40  
基金资助:国家重点研发计划(2018YFC0310300);海洋装备用金属材料及其应用国家重点实验室开放基金(SKLMEA-K201901);海洋装备用金属材料及其应用国家重点实验室开放基金(SKLMEA-K202002)
作者简介: 荀 雨,女,1995年生,硕士生
图1  临界区热处理工艺示意图
图2  实验用钢不同热处理后的显微组织
图3  1#钢的AF组织和4#钢PF组织的透射电镜照片
图4  1#、2#和4#钢的EBSD分析结果
Steels

RP0.5

/MPa

Rm

/MPa

UEL

/%

TEL

/%

Yield ration
1#6427465.217.50.860.152
2#37758416.134.00.650.186
3#36356118.336.00.650.200
4#33452919.538.00.630.220
表1  实验用钢的力学性能
图5  实验用钢的应力-应变曲线
图6  PF体积分数对实验用钢工程应力的影响
图7  PF体积分数对应力比和屈强比的影响
图8  实验用钢的屈强比、应力比和延伸率与应变硬化指数的关系
图9  实验用钢的Hollomon分析曲线
图10  实验用钢的真应力、应变硬化率与真应变的关系
图11  实验用钢的修正C-J分析曲线

Experimental

Steel

Stage ⅠStage ⅡStage ⅢEngineering strain/%
1-m1/m1-m1/m1-m1/mTransition strainUEL

εt1

(Stage Ⅰ~Ⅱ)

εt2

(Stage Ⅱ~Ⅲ)

1#//-9.210.098-21.40.045/1.55.2
2#-1.290.437-5.500.154-11.70.0791.711.616.1
3#-1.750.364-5.010.166-11.90.0783.713.618.3
4#-2.280.305-5.360.157-9.570.0954.814.619.5
表3  实验用钢的修正C-J分析中各阶段应变硬化能力和转折应变(εt)
1 Wang W, Shan Y Y, Yang K. Study of high strength pipeline steels with different microstructures [J]. Mater. Sci. Eng., 2009, 502A: 38
2 Zuo X R, Zhou Z Y. Study of pipeline steels with acicular ferrite microstructure and ferrite-bainite dual-phase microstructure [J]. Mater. Res., 2015, 18: 36
doi: 10.1590/1516-1439.256813
3 Shi X B, Yan W, Wang W, et al. Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel [J]. J. Iron Steel Res. Int., 2015, 22: 937
doi: 10.1016/S1006-706X(15)30093-5
4 Kim Y M, Kim S K, Lim Y J, et al. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels [J]. ISIJ Int., 2002, 42: 1571
doi: 10.2355/isijinternational.42.1571
5 Zhang H M, Wang H B, Liu Z Y, et al. Study on the grain refinement mechanism of low carbon micro-alloyed steels for line-pipe applications [J]. Trans. Mater. Heat Treat., 2006, 27(6): 99
5 张红梅, 王宏斌, 刘振宇 等. X70微合金管线钢组织中针状铁素体细化机制的研究 [J]. 材料热处理学报, 2006, 27(6): 99
6 Wang M M, Gao X H, Zhu C L, et al. Microstructure, mechanical properties, and strain-hardening behavior of V-N microalloyed pipeline steels consisted of polygonal ferrite and acicular ferrite [J]. Steel Res. Int., 2021, 92: 2000404
doi: 10.1002/srin.202000404
7 Shi L, Yan Z S, Liu Y C, et al. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment [J]. Mater. Sci. Eng., 2014, 590A: 7
8 Tang C J, Shang C J, Guan H L, et al. Strain hardening behavior and stress ratio of high deformability pipeline steel with ferrite/bainite multi-phase microstructure [J]. Chin. J. Mater. Res., 2016, 30: 409
8 汤忖江, 尚成嘉, 关海龙 等. 大变形管线钢中F/B多相组织应变硬化行为和应力比研究 [J]. 材料研究学报, 2016, 30: 409
9 Tang C J. Study on mechaincal behavior of high-strength low-alloy multi-phase steel [D]. Beijing: University of Science and Technology Beijing, 2016
9 汤忖江. 多相高强度低合金钢的力学行为研究 [D]. 北京: 北京科技大学, 2016
10 Ishikawa N, Yasuda K, Sueyoshi H, et al. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method [J]. Acta Mater., 2015, 97: 257
doi: 10.1016/j.actamat.2015.06.037
11 Kumar A, Singh S B, Ray K K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels [J]. Mater. Sci. Eng., 2008, 474A: 270
12 Kalashami A G, Kermanpur A, Ghassemali E, et al. Correlation of microstructure and strain hardening behavior in the ultrafine-grained Nb-bearing dual phase steels [J]. Mater. Sci. Eng., 2016, 678A: 215
13 Ji L K, Li H L, Zhao W Z, et al. Microstructure and strain-hardening performance analysis for X70 high strain line pipe [J]. J. Xi'an Jiaotong Univ., 2012, 46(9): 108
13 吉玲康, 李鹤林, 赵文轸 等. X70抗大变形管线钢管的组织结构和形变硬化性能分析 [J]. 西安交通大学学报, 2012, 46(9): 108
14 Ji L K, Feng H, Zhang J M, et al. Strain-hardening properties of high grade line pipes [J]. Mater. Sci. Forum, 2018, 913: 331
doi: 10.4028/www.scientific.net/MSF.913.331
15 Das S, Hofmann F, Tarleton E. Consistent determination of geometrically necessary dislocation density from simulations and experiments [J]. Int. J. Plast., 2018, 109: 18
doi: 10.1016/j.ijplas.2018.05.001
16 Saeidi N, Ashrafizadeh F, Niroumand B, et al. EBSD study of micromechanisms involved in high deformation ability of DP steels [J]. Mater. Des., 2015, 87: 130
doi: 10.1016/j.matdes.2015.07.134
17 Tang C J, Shang C J, Xia D X, et al. Characterization parameters for strain hardening behavior of ferrite/bainite multi-phase steel [J]. J. Iron Steel Res., 2019, 31: 553
17 汤忖江, 尚成嘉, 夏佃秀 等. 铁素体/贝氏体多相组织钢硬化行为表征参数 [J]. 钢铁研究学报, 2019, 31: 553
18 Das D, Chattopadhyay P P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel [J]. J. Mater. Sci., 2009, 44: 2957
doi: 10.1007/s10853-009-3392-0
19 Alibeyki M, Mirzadeh H, Najafi M. Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite [J]. Vacuum, 2018, 155: 147
doi: 10.1016/j.vacuum.2018.06.003
20 Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing [J]. Mater. Chem. Phys., 2019, 230: 1
doi: 10.1016/j.matchemphys.2019.03.053
21 Mazaheri Y, Jahanara A H, Sheikhi M, et al. High strength-elongation balance in ultrafine grained ferrite-martensite dual phase steels developed by thermomechanical processing [J]. Mater. Sci. Eng., 2019, 761A: 138021
22 Pakzaman H R, Banadkouki S S G. Effect of martensite volume fraction on abnormal work hardening behavior of a low carbon low alloy ferrite-martensite dual-phase steel [J]. Int. J. Mater. Res., 2020, 111: 983
doi: 10.3139/146.111967
23 Soliman M, Palkowski H. Strain hardening dependence on the structure in dual-phase steels [J]. Steel Res. Int., 2021, 92: 2000518
doi: 10.1002/srin.202000518
24 Mazaheri Y, Jahanara A H, Sheikhi M, et al. On the simultaneous improving of strength and elongation in dual phase steels via cold rolling [J]. Metals, 2020, 10: 1676
doi: 10.3390/met10121676
25 Jiang Z H, Guan Z Z, Lian J S. The relationship between ductility and material parameters for dual-phase steel [J]. J. Mater. Sci., 1993, 28: 1814
doi: 10.1007/BF00595750
26 Mirzadeh H, Alibeyki M, Najafi M. Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual-phase steel [J]. Metall. Mater. Trans., 2017, 48A: 4565
27 Movahed P, Kolahgar S, Marashi S P H, et al. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets [J]. Mater. Sci. Eng., 2009, 518A: 1
28 Lian J, Jiang Z, Liu J. Theoretical model for the tensile work hardening behaviour of dual-phase steel [J]. Mater. Sci. Eng., 1991, 147A: 55
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.