Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (9): 641-650    DOI: 10.11901/1005.3093.2020.562
  研究论文 本期目录 | 过刊浏览 |
用常压空气等离子体对PBO纤维表面接枝改性
陈怿咨1, 张承双1,2, 陈平1()
1.大连理工大学化工学院 精细化工国家重点实验室 大连 116024
2.西安航天复合材料研究所 西安 710025
Surface Graft Modification of Domestic PBO Fiber by Atmospheric Air Plasma
CHEN Yizi1, ZHANG Chengshuang1,2, CHEN Ping1()
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Xi'an Aerospace Composites Research Institute, Xi'an 710025, China
引用本文:

陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.
Yizi CHEN, Chengshuang ZHANG, Ping CHEN. Surface Graft Modification of Domestic PBO Fiber by Atmospheric Air Plasma[J]. Chinese Journal of Materials Research, 2021, 35(9): 641-650.

全文: PDF(6592 KB)   HTML
摘要: 

用常压空气介质阻挡放电等离子体在PBO纤维表面接枝聚氨酯,研究了上浆剂对接枝反应的影响。对接枝改性后的PBO纤维的XPS分析结果表明,等离子体接枝聚氨酯改性使PBO纤维表面的化学组成发生了很大的变化。与DBD单独处理相比,接枝改性后的PBO纤维出现了更多的羧基,其提高值为64%~189%(不含上浆剂时)、102%~184%(含上浆剂时),为其与其它材料之间的化学键合提供了条件。接枝反应不受上浆剂的影响,等离子体接枝反应破坏了表面PBO分子的噁唑环。通过ATR-FTIR发现,带上浆剂的PBO纤维接枝前后噁唑环的特征峰没有变化,因此在近表面尺度的PBO分子没有破坏的依据;而在不含上浆剂的接枝改性PBO纤维上能检测到噁唑环的破坏,表明上浆剂能阻止等离子体对纤维近表面层的破坏。

关键词 PBO纤维等离子体接枝表面改性化学成分    
Abstract

Polyurethane was grafted onto the surface of domestic poly-p-phenylene benzobisoxazole (PBO) fiber by atmospheric air dielectric barrier discharge plasma, and the effect of sizing agent on grafting reaction was invetigated. The results of XPS analysis show that the surface chemical composition of PBO fiber modified by plasma grafting polyurethane changed greatly. Compared with the simple air dielectric barrier discharge plasma treated one, the PBO fiber modified by plasma grafting polyurethane had more carboxyl groups, and of which the increment for the later one was 64%~189% (without sizing agent) and 102~184% (with sizing agent) respectively. Sizing agent cannot affect the grafting reaction, and the oxazole ring of PBO was destroyed by plasma grafting reaction. However, ATR-FTIR characterization of PBO fibers with sizing agent showed that the oxazole ring characteristic peaks did not change before and after grafting, so there was no evidence for the destruction of PBO molecules in the near surface. The damage of oxazole ring was detected on the grafted PBO fiber without sizing agent. Thus the sizing agent can prevent the damage of DBD plasma on the near surface of the fiber.

Key wordsPBO fiber    plasma graft    surface modified    chemical
收稿日期: 2020-12-25     
ZTFLH:  V258  
基金资助:国家自然科学基金(513030106);兴辽英才计划-创新领军人才项目(XLYC1802085);大连市科技创新基金计划(2019J11CY007);中央高校基本科研业务费专项资金资助(DUT20GF207);三束材料改性教育部重点实验室基金资助项目(KF2004);航天支撑技术项目(617010802)
作者简介: 陈怿咨,男,1993年生,博士生
IsocyanatesAlcoholsExtenderReaction Product
HMDIEGPMDAHMDIE-PU
HDIHDIE-PU
IPDIIPDIE-PU
HMDITEGHMDITE-PU
HDIHDITE-PU
IPDIIPDITE-PU
表1  聚氨酯的合成原料及产物的名称[29]
PBO sampleSoxhlet before treatmentGraftDBD treatmentSoxhlet before characterization
PBOs
PBO
DBDs
DBD
HDIEsHDIE-PU
HDIEHDIE-PU
HDITEsHDITE-PU
HDITEHDITE-PU
HMDIEsHMDIE-PU
HMDIEHMDIE-PU
HMDITEsHMDITE-PU
HMDITEHMDITE-PU
IPDIEsIPDIE-PU
IPDIEIPDIE-PU
IPDITEsIPDITE-PU
IPDITEIPDITE-PU
表2  经过处理的PBO纤维样品的编号
图1  接枝前后PBO纤维表面的XPS全谱扫描图
图2  接枝前后PBO纤维表面XPS的N1s分峰谱
图3  接枝前后PBO纤维表面XPS的O1s分峰谱
SamplesGroup percent/%Group ratio/%Active C/%
C=CC-ON=C-OCOOHC-O/C=CN=C-O/C=CCOOH/C=C
PBOs61.326.112.60.042.520.60.038.7
PBO63.027.39.70.043.215.40.037.0
DBDs52.230.214.03.657.826.86.947.8
DBD53.233.210.63.062.419.95.646.8
HDIEs57.327.78.36.748.314.611.842.7
HDIE55.532.18.83.557.915.96.444.5
HDITEs49.130.210.310.461.421.021.150.9
HDITE60.824.67.76.940.412.711.339.2
HMDIEs53.430.99.95.957.818.511.046.6
HMDIE58.627.67.86.047.013.310.241.4
HMDITEs54.228.58.48.952.615.616.545.8
HMDITE60.525.06.48.041.410.613.239.5
IPDIEs53.132.56.77.861.112.614.646.9
IPDIE51.932.29.56.562.018.212.548.1
IPDITEs50.430.011.18.559.422.116.849.6
IPDITE52.429.210.08.455.719.116.147.6
表3  接枝前后PBO纤维表面含碳基团的含量[28]
SamplesGroup percent/%Group ratio/%Group percent/%Group ratio/%
=N--NH-=N-/-NH-C=O/H2OC-O(C=O/H2O)/C-O
PBOs84.715.3552.855.045.0122.2
PBO80.519.5413.448.451.648.4
DBDs63.836.2176.046.353.786.2
DBD76.323.7322.841.858.241.8
HDIEs58.042.0137.842.157.972.6
HDIE65.534.5190.238.661.438.6
HDITEs55.444.6124.540.659.468.2
HDITE62.237.8164.844.955.144.9
HMDIEs61.338.7158.339.660.465.6
HMDIE62.737.3168.241.458.641.4
HMDITE66.233.8195.943.856.243.8
HMDITEs55.644.4125.540.859.269.1
IPDIE69.830.2230.841.059.041.0
IPDIEs56.243.8128.237.262.859.3
IPDITE63.936.1176.841.059.041.0
IPDITEs62.337.7165.339.860.266.2
表4  接枝前后PBO纤维表面含氮、氧基团的含量
图4  接枝前后PBOs纤维的全反射红外光谱
图5  带有上浆剂的PBO纤维接枝前后全反射红外光谱
SampleI844/I818d(PBOs)I924/I818d(PBOs)I924/I844d(PBOs)
PBOs96.93-80.05-82.58-
DBDs95.31-1.6279.20-0.8583.100.52
HDIEs94.68-2.2560.48-19.5763.88-18.70
HDITEs94.69-2.2458.12-21.9361.38-21.20
HMDIEs97.830.8966.06-13.9967.52-15.06
HDMITEs94.50-2.4377.12-2.9381.60-0.98
IPDIEs92.82-4.1159.35-20.7063.94-18.65
IPDITEs95.72-1.2278.62-1.4382.14-0.45
表5  接枝前后PBOs纤维的峰强比
图6  等离子体接枝PBOs纤维示意图
图7  等离子体接枝PBO纤维机理的示意图
SampleI844/I818d(PBO)I924/I818d(PBO)I924/I844d(PBO)
PBO94.17-61.16-64.95-
DBD94.340.1775.4814.3280.0115.06
HDIE95.030.8660.30-0.8763.45-1.50
HDITE94.190.0261.730.5665.540.59
HMDIE96.151.9862.130.9664.61-0.34
HDMITE94.840.6760.06-1.1063.33-1.62
IPDIE94.550.3861.790.6365.350.40
IPDITE95.070.9079.2318.0783.3418.39
表6  带有上浆剂的PBO纤维接枝前后的峰强比
图8  等离子体接枝带有上浆剂的PBO纤维示意图
1 Qian B Z. China realize mass production of PBO fiber [J]. Synth. Fib. China, 2019, 48(4): 55
1 钱伯章. 我国实现PBO纤维量产 [J]. 合成纤维, 2019, 48(4): 55
2 Zhang C S, Liu N, Bao Y L, et al. The effect of thermo-oxidative aging on mechanical properties of PBO fiber reinforced composites [J]. Synth. Mater. Ag. Appl., 2016, 45(5): 17
2 张承双, 刘宁, 包艳玲等. 热氧老化对PBO纤维复合材料力学性能的影响 [J]. 合成材料老化与应用, 2016, 45(5): 17
3 Li Y, Wang X F, Wo Z K. The high-perfomance fiber of 21th century-PBO fiber [J]. Synth. Fib. China, 2002, 31(1): 18
3 李晔, 汪晓峰, 沃志坤. 二十一世纪的超级纤维—PBO纤维 [J]. 合成纤维, 2002, 31(1): 18
4 Zhou Y, Gao H, Zhang M Y, et al. Study on heat resistance and structural evolution of high-performance organic fibers [J]. China Synth. Fib. Ind., 2019, 42(4): 6
4 周映, 高鸿, 张梦颖等. 高性能有机纤维耐热性能与结构演变研究 [J]. 合成纤维工业, 2019, 42(4): 6
5 Kitagawa T, Murase H, Yabuki K. Morphological study on poly-p-phenylenebenzobisoxazole (PBO) fiber [J]. J. Polym. Sci., 1998, 36B: 39
6 Luan Y Y, Liu X F, Xie J X. Process and action mechanism of sonochemical surface treatment of PBO fibers [J]. Polym. Mater. Sci. Eng., 2016, 25(9): 86
6 栾燕燕, 刘雪峰, 谢建新. PBO纤维表面超声化学处理工艺及作用机理 [J]. 高分子材料科学与工程, 2016, 25(9): 86
7 Luo K Q, Jin J H, Yang S L, et al. Improvement of surface wetting properties of poly (p-phenylene benzoxazole) by incorporation of ionic groups [J]. Mater. Sci. Eng., 2006, 132B: 59
8 Zhang T, Hu D Y, Jin J H, et al. Improvement of surface wettability and interfacial adhesion ability of poly (p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2, 5-dihydroxyterephthalic acid (DHTA) [J]. Eur. Polym. J., 2009, 45: 302
9 Luo L B, Hong D, Zhang L J, et al. Surface modification of PBO fibers by direct fluorination and corresponding chemical reaction mechanism [J]. Compo. Sci. Technol., 2018, 165: 106
10 Wu G M, Shyng Y T, et al. Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment [J]. Composites, 2004, 35A: 1291
11 Wang J L, Liang G Z, Zhao W, et al. Enzymatic surface modification of PBO fibres [J]. Surf. Coat. Technol., 2007, 201: 4800
12 Zhang C H, Zhang C Y, Zhang Q, et al. Synergy modification of the microstructure and the property of PBO fiber by γ‐ray radiation [J]. Polym. Eng. Sci., 2018, 58: 272
13 Chen L, Du Y Z, Huang Y D, et al. Hierarchical poly (p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer [J]. Composites, 2016, 88A: 123
14 Chen L, Hu Z, Zhao F, et al. Enhanced interfacial properties of PBO fiber via electroless nickel plating [J]. Sur. Coat. Technol., 2013, 235: 669
15 Tang L, Zhang J L, Gu J W. Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites [J]. Chin. J. Aeronaut., 2021, 34: 659
16 Chen P, Yu Q, Xiong X H, et al. Surface modification of high performance fibers and interfacial properties of their reinforced bismaleimide resin matrix composites [J]. Acta Polymer. Sin., 2018, (3): 323
16 陈平, 于祺, 熊需海等. 高性能纤维表面改性及其双马树脂基复合材料界面 [J]. 高分子学报, 2018, (3): 323
17 Zhang R Y, Pan X L, Jiang M W, et al. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber [J]. Appl. Surf. Sci., 2012, 261: 147
18 Liu D, Chen P, Mu J J, et al. Improvement and mechanism of interfacial adhesion in PBO fiber/bismaleimide composite by oxygen plasma treatment [J]. Appl. Surf. Sci., 2011, 257: 6935
19 Liu Z, Chen P, Zhang X L, et al. Effects of surface modification by atmospheric oxygen dielectric barrier discharge plasma on PBO fibers and its composites [J]. Appl. Surf. Sci., 2013, 283: 38
20 Tamargo-Martínez K, Martínez-Alonso, A, Gracia M, et al. Tailoring of the interfacial properties of polymeric single fibre-reinforced epoxy composites by non-oxidative plasma treatments [J]. Composites, 2013, 50A: 102
21 Wu G M, Chang C H. Modifications of rigid rod poly(1, 4-phenylene-cis-benzobisoxazole) fibers by gas plasma treatments [J]. Vacuum, 2007, 81: 1159
22 Liu D, Chen P, Yu Q, et al. Improved mechanical performance of PBO fiber-reinforced bismaleimide composite using mixed O2/Ar plasma [J]. Appl. Surf. Sci., 2014, 305: 630
23 Liu Z, Chen B H, Chen P. Treatment of oxygen dielectric barrier discharge plasma on PBO fiber surface and influence on its BMI composites [J]. Chin. J. Mater. Res., 2020, 34: 109
23 刘哲, 陈博涵, 陈平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响 [J]. 材料研究学报, 2020, 34: 109
24 Liu Z, Chen P, Han D B, et al. Atmospheric air plasma treated PBO fibers: wettability, adhesion and aging behaviors [J]. Vacuum, 2013, 92: 13
25 Li W B. Study of surface modification on domestic high-peroformance PBO fiber [D]. Shanghai: East China University of Science and Technology, 2013
25 李文彬. 国产高性能PBO纤维的表面改性研究 [D]. 上海: 华东理工大学, 2013
26 Liu X D, Qiu Z M, Wang B, et al. The surface analysis and surface treatment of PBO fiber [J]. J. Solid Rocket Technol., 2002, 25(2): 70
26 刘新东, 丘哲明, 王斌等. PBO纤维表面分析与表面偶联剂处理 [J]. 固体火箭技术, 2002, 25(2): 70
27 Gu J W, Dang J, Geng W C, et al. Surface modification of HMPBO fibers by silane coupling agent of KH-560 treatment assisted by ultrasonic vibration [J]. Fib. Polym., 2012, 13: 979
28 Chen Y Z, Xu D W, Qiu H F, et al. Improvement of the interfacial properties of PBO/Epoxy composites by online continuous plasma grafting with polyurethane [J]. Progr. Organ. Coat., 2020, 143: 105610
29 Chen P, Chen Y Z, Wang J, et al. Method for improving interfacial property of composite material by multi-carboxy polyurethane grafting [P]. Chin Pat, 201810723309.1, 2018
29 陈平, 陈怿咨, 王静等. 一种多羧基聚氨酯接枝提高复合材料界面性能的方法 [P]. 中国专利, 201810723309.1, 2018
[1] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[2] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[3] 刘哲,陈博涵,陈平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响[J]. 材料研究学报, 2020, 34(2): 109-117.
[4] 徐龙,刘福春,韩恩厚. PEDOTPSS改性锌粉对冷涂锌涂层防护性能的影响[J]. 材料研究学报, 2019, 33(10): 776-784.
[5] 刘莹莹, 万隆, 王俊沙. 溶胶凝胶原位成型陶瓷结合剂砂轮中碳化硅的改性[J]. 材料研究学报, 2017, 31(9): 659-664.
[6] 汪波, 黄赤, 黄志雄, 张景洁. 不同偶联剂对空心玻璃微球/酚醛复合泡沫塑料界面性能的影响[J]. 材料研究学报, 2016, 30(3): 209-219.
[7] 马小龙,敖玉辉,肖凌寒,董景隆,张会轩. 表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响[J]. 材料研究学报, 2015, 29(2): 101-107.
[8] 杨慎宇,唐三元,谭文成,曾戎,杨辉,黄馨霈,夏吉生,屠美. 羟基磷灰石接枝壳聚糖表面改性及其复合水凝胶的生物相容性*[J]. 材料研究学报, 2015, 29(11): 801-806.
[9] 刘洋,梁国正. 生物酶催化接枝芳纶纤维和复合材料的界面性能[J]. 材料研究学报, 2015, 29(10): 794-800.
[10] 易增博,冯利邦,郝相忠,薛向军,郭玉雄. 表面处理对碳纤维及其复合材料性能的影响[J]. 材料研究学报, 2015, 29(1): 67-74.
[11] 刘明明, 刘福春, 韩恩厚, 唐囡, 万军彪, 邓静伟. 纳米碳酸钙浓缩浆对环氧涂层耐蚀性的影响*[J]. 材料研究学报, 2013, 27(4): 425-431.
[12] 杨洪斌 王靖 吴惠敏 傅雅琴. 硅溶胶改性处理对碳纤维/环氧树脂复合材料拉伸性能的影响[J]. 材料研究学报, 2013, 27(1): 108-112.
[13] 高家诚 吴曙芳 杨晓东 畅 欣. 粉末表面氧化对二氧化铀芯块烧结性能的影响[J]. 材料研究学报, 2012, 26(3): 279-283.
[14] 檀雨默 张爱波 郑亚萍 兰岚 陈伟. 具有固--液转变的磁性Fe3O4纳米流体的制备、结构及性能[J]. 材料研究学报, 2011, 25(6): 561-565.
[15] 杨慧慧 李来风 黄荣进 黄传军 张浩 徐向东. 聚醋酸乙烯酯/纳米ZnO颗粒复合材料的等离子聚合及其光学性能[J]. 材料研究学报, 2011, 25(1): 19-24.