Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (1): 67-74    DOI: 10.11901/1005.3093.2014.322
  本期目录 | 过刊浏览 |
表面处理对碳纤维及其复合材料性能的影响
易增博1,冯利邦1,2(),郝相忠2,薛向军2,郭玉雄1
1. 兰州交通大学机电工程学院 兰州 730070
2. 白银市特种碳素新材料工程技术研究中心 白银 730090
Effect of Surface Treatment on Properties of Carbon Fiber and Reinforced Composites
Zengbo YI1,Libang FENG1,2,*(),Xiangzhong HAO2,Xiangjun XUE2,Yuxiong GUO1
1. School of Mechatronic Electromechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Baiyin Engineering Research Center of Special Carbon New Materials, Baiyin 730090, China
引用本文:

易增博,冯利邦,郝相忠,薛向军,郭玉雄. 表面处理对碳纤维及其复合材料性能的影响[J]. 材料研究学报, 2015, 29(1): 67-74.
Zengbo YI, Libang FENG, Xiangzhong HAO, Xiangjun XUE, Yuxiong GUO. Effect of Surface Treatment on Properties of Carbon Fiber and Reinforced Composites[J]. Chinese Journal of Materials Research, 2015, 29(1): 67-74.

全文: PDF(5050 KB)   HTML
摘要: 

用去离子水超声、浓硝酸浸泡、浓硝酸超声等对碳纤维进行表面处理, 研究了表面处理对碳纤维的微结构、表面化学组成、相结构、复丝拉伸强度、以及改性碳纤维增强环氧树脂复合材料的结构和力学性能的影响。结果表明: 硝酸氧化和超声处理对碳纤维表面进行了有效改性, 其中硝酸处理使碳纤维表面粗糙度和含氧官能团数量显著增大, 超声处理使碳纤维获得良好的分散性并使碳纤维比表面积和含氧官能团增加。硝酸氧化与超声空化相结合强化了碳纤维表面的氧化和刻蚀作用, 从而增强了碳纤维与树脂基体界面之间的“机械锚定”和化学键合作用, 使碳纤维与树脂之间的界面结合强度得以有效提高, 从而显著提高了复合材料的力学性能。

关键词 复合材料碳纤维硝酸超声波表面改性    
Abstract

The carbon fibers were pre-treated by means of ultrasonic irradiation in water, immersion in nitric acid without and with ultrasonic irradiation, respectively. Then the effect of the surface pre-treatments on the microstructure, surface chemical and phase composition, the multifilament tensile strength of carbon fibers as well as the microstructure and mechanical property of the carbon fiber-reinforced epoxy resin composites were investigated. Results show that carbon fiber surfaces can be modified effectively by nitric acid oxidation with ultrasonic irradiation. Thereinto, the nitric acid treatment increases the roughness and the amount of oxygen-containing functional groups of carbon fiber surfaces, while the ultrasonic irradiation leads to a good dispersity of carbon fibers and the increase of the specific surface area and the oxygen-containing functional groups of carbon fiber surfaces. Moreover, the combined effect of the nitric acid oxidation and the ultrasonic cavitations could enhance the oxidizing and etching of the carbon fiber surfaces, which consequently may act as "mechanical anchor" and chemically active sites for enhancing the bonding between carbon fiber and resin matrix, and which further improves the mechanical property of the resulting composites significantly.

Key wordscomposites    carbon fiber    nitric acid    ultrasonic    surface modification
收稿日期: 2014-05-23     
图1  用不同方式表面处理后碳纤维的SEM像
图2  不同方式表面处理后碳纤维的EDS能谱图
CF Element content
C/%, mass fraction O/%, mass fraction O/C
Desized 95.65 4.35 0.05
Ultrasonic treated at 60℃/2 h in water 91.47 8.53 0.09
Treated at 60℃/2 h in nitric acid 88.71 11.29 0.12
Ultrasonic treated at 60℃/2 h in nitric acid 87.04 12.96 0.15
表1  不同方式表面处理后碳纤维表面元素含量的变化.
图3  不同方式表面处理后碳纤维拉伸强度的变化
图4  不同方式表面处理后碳纤维的XRD图
CF (002) crystallographic plane (100) crystallographic plane
2θ d /nm β/rad Lc/nm 2θ d /nm β/rad La/nm
Desized 24.61 0.362 0.0707 2.10 44.29 0.205 0.0113 13.80
Ultrasonic treated at 60℃/2 h in water 24.63 0.361 0.0708 2.09 44.28 0.205 0.0113 13.80
Treated at 60℃/2 h in nitric acid 24.63 0.361 0.0703 2.11 44.29 0.205 0.0114 13.78
Ultrasonic treated at 60℃/2 h in nitric acid 24.77 0.358 0.0724 2.06 44.16 0.205 0.0115 13.60
表2  不同方式表面处理后碳纤维的相结构参数
图5  不同方式表面处理后碳纤维增强的复合材料的拉伸强度和弯曲强度对比
图6  不同方式表面处理后碳纤维增强的复合材料的弯曲载荷-位移关系图
1 L. C. Hollaway,A review of the present future utilization of FRP composites in the civil infrastructure with reference to their important in service properties, Construction and Building Materials, 24(11), 2419(2010)
2 S. J. Park, Y. J. Jung, S. Kim,Effect of fluorine–oxygen mixed gas treated graphite fibers on electrochemical behaviors of platinum–ruthenium nanoparticles toward methanol oxidation, Journal of Fluorine Chemistry, 144, 124(2012)
3 W. Song, A. J. Gu, G. Z. Liang,Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites, Applied Surface Science, 257(9), 4069(2011)
4 A. Kafi, M. Huson, C. Creighton, J. Y. Khoo,Effect of surface functionality of PAN-based carbon fibres on the mechanical performance of carbon/epoxy composites, Composites Science and Technology, 94, 89(2014)
5 YANG Hongbin,WANG Jing, WU Huimin, FU Yaqin, Effect of silica sol modification on the tensile property of carbon fiber/epoxy composites, Chinese Journal of Materials Research, 27(1), 108(2013)
5 (杨洪斌, 王 靖, 吴惠敏, 傅雅琴, 硅溶胶改性处理对碳纤维/环氧树脂复合材料拉伸性能的影响, 材料研究学报, 27(1), 108(2013))
6 JIN Changshan, Ultrasonic Engineering, (Harbin:?Harbin Institute of Technology press,?1989)p.150
6 (150)
7 M. Keswani, S. Raghavan, R. Govindaraian, I. Brown,Measurement of hydroxyl radicals in water cleaning solutions irradiated with megasonic waves, Microelectronic Engineering, 118, 61(2014)
8 N. W. Zhu, X. Chen, T. Zhang, P. X. Wu, P. Li, J. H. Wu,Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes, Bioresource Technology, 102(1), 422(2011)
9 WEI Nan,WANG Jingwen, Influence of ultrasonic oxidation on surface properties of carbon fibers, Materials of Mechanical Engineering, 35(11), 28(2011)
9 (魏 楠, 王经文, 超声氧化处理对碳纤维表面性能的影响, 机械工程材料, 35(11), 28(2011))
10 O. Parisa, D. Loidl, H. Peterlik,Texture of PAN and pitch-based carbon fibers, Carbon, 40, 551(2002)
11 S. L. Gao, E. M?der, S. F. Zhandarov,Carbon ?bers and composites with epoxy resins: topography, fractography and interphases, Carbon, 42, 515(2004)
12 LIU Li,ZHANG Xiang, HUANG Yudong, Effect of ultrosonic on surface characteristics of aramid, Acta Materiae Compositae Sinica, 2(20), 35(2003)
12 (刘 丽, 张 翔, 黄玉东, 超声作用对芳纶纤维表面性质的影响, 复合材料学报, 2(20), 35(2003))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.