材料研究学报, 2020, 34(8): 584-590 DOI: 10.11901/1005.3093.2020.042

研究论文

四氧化三钴/碳纳米管薄膜的水热合成及其储锂性能

刘芝君, 李之锋,, 王春香, 谢光明, 黄庆研, 钟盛文

江西理工大学材料科学与工程学院 赣州 341000

Hydrothermal Synthesis and Electrochemical Performance of Co3O4@CNTs Composite Film

LIU Zhijun, LI Zhifeng,, WANG Chunxiang, XIE Guangming, HUANG Qingyan, ZHONG Shengwen

School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

通讯作者: 李之锋,副教授,jxlzfeng@163.com,研究方向为锂离子电池研究和应用

责任编辑: 吴岩

收稿日期: 2020-02-12   修回日期: 2020-03-03   网络出版日期: 2020-08-25

基金资助: 国家自然科学基金.  51874151
国家自然科学基金.  51964017
江西省教育厅自然科学基金.  GJJ160202
江西省教育厅自然科学基金.  GJJ190428

Corresponding authors: LI Zhifeng, Tel: (0797)8312452, E-mail:jxlzfeng@163.com

Received: 2020-02-12   Revised: 2020-03-03   Online: 2020-08-25

Fund supported: the National Natural Science Foundation of China.  51874151
the National Natural Science Foundation of China.  51964017
Jiangxi Provincial Education Office Natural Science Fund Project.  GJJ160202
Jiangxi Provincial Education Office Natural Science Fund Project.  GJJ190428

作者简介 About authors

刘芝君,女,1993年生,硕士生

摘要

以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。

关键词: 复合材料 ; 负极材料 ; 水热法 ; Co3O4 ; 碳纳米管薄膜

Abstract

A facile and effective method has been developed for synthesis of Co3O4/carbon nanotube film (Co3O4@CNTs) composites as anode materials in LIBs. With 5-sulfosalicylic acid and glutaric acid as chelation and oxidation reagents, the CoSO4 can be directly oxidized into nanoscale Co3O4 under hydrothermal conditions. Co3O4/carbon nanotube film (Co3O4@CNTs) composites can be easily synthesized and the Co3O4 particles are tightly attached to carbon nanotubes via the same process. The electrochemical test results show that the composites film has higher discharge specific capacity and excellent rate performance. At 0.2C rate the initial discharge specific capacity can be up to 1712.5 mAh·g-1, the discharge specific capacity is still about 1128.9 mAh·g-1 after 100 cycles. At 1C rate the discharge specific capacity of 527.8 mAh·g-1 is still maintained after 100 cycles. The excellent performance is due to the synergistic combination of Co3O4 and CNTs. The highly dispersed Co3O4 expands the contact area between the active material and the electrolyte, and CNTs can form the conductive network to increase the electron conductivity, thus improve the cycle performance of Co3O4 anode materials.

Keywords: composite ; anode material ; hydrothermal ; Co3O4 ; carbon nanotube film

PDF (3741KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘芝君, 李之锋, 王春香, 谢光明, 黄庆研, 钟盛文. 四氧化三钴/碳纳米管薄膜的水热合成及其储锂性能. 材料研究学报[J], 2020, 34(8): 584-590 DOI:10.11901/1005.3093.2020.042

LIU Zhijun, LI Zhifeng, WANG Chunxiang, XIE Guangming, HUANG Qingyan, ZHONG Shengwen. Hydrothermal Synthesis and Electrochemical Performance of Co3O4@CNTs Composite Film. Chinese Journal of Materials Research[J], 2020, 34(8): 584-590 DOI:10.11901/1005.3093.2020.042

近年来锂离子电池(LIBs)在各种移动设备和电动汽车等领域广泛使用 [1],纯电动汽车的续航里程已经达到400 km[2]。目前使用的高能量密度正极材料,主要是以NCM523和NCM622为主的层状镍基正极材料(NCM)系列[3]。负极材料多采用石墨,但是其理论比容量较低(372 mAh·g-1),难以进一步发展[4~7]。因此,寻找替代石墨作为高能量密度负极材料极为迫切。

过渡金属氧化物的丰度大且具有较高的理论比容量(600~1200 mAh·g-1) [8],是极具应用价值的负极材料之一。Co3O4的理论比容量较高(890 mAh·g-1)[9,10],能提高锂离子电池的容量,但是在脱嵌锂过程中发生的体积膨胀使活性物质脱落、容量衰减快和循环性能降低[11,12]。控制反应条件使Co3O4纳米化,可提供更多的反应位点,减小锂离子扩散路径[13]。同时,与导电材料(如:Co3O4@C[14,15],Co3O4@Graphene[16,17],Co3O4@ CNTs[18,19])复合可提高Co3O4的电子电导率,缓解氧化物负极材料在循环过程中的体积膨胀。在传统的电池制备工艺中使用粘结剂和导电剂与活性材料混合可使材料均一化成为一个稳定的系统,但是材料在循环中的体积膨胀破坏了体系的稳定性,使其分层、脱落和容量下降[20]。不使用粘结剂和导电剂有助于保持体系的一致性,提高电池可逆容量。本文使用简单的一步水热反应将Co3O4纳米颗粒负载于碳纳米管薄膜上制备三维Co3O4@CNTs复合材料薄膜,并研究其储锂性能。

1 实验方法

1.1 材料的制备

将摩尔比为1:1:1的CoSO4·7H2O(AR,麦克林)、5-磺基水杨酸(AR)和戊二酸(AR)溶于50 mL去离子水中,用NaOH(AR,西陇化工)将溶液的pH值调节至7.0。在溶液中加入大小为2 cm×2 cm、厚度6 μm的碳纳米管薄膜,然后转移至聚四氟乙烯内衬的反应釜中,在140℃水热反应24 h制得Co3O4@CNTs薄膜复合材料。使用5-磺基水杨酸和戊二酸作为氧化剂将Co2+部分氧化成Co3+,CNFs提供成核位点使Co3O4能够负载于其上形成Co3O4@CNTs复合物。Co3O4与CNTs薄膜的质量比约为85:15。将制得的薄膜复合材料洗涤和干燥后裁成直径为14 mm的圆片。为了对比,在同等条件下合成Co3O4纳米粉体,并及其与导电剂SP、粘结剂PVDF按质量比75:15:10混合均匀,涂覆在铜箔后进行干燥和冲片,然后在真空手套箱中组装电池。实验流程如图1所示。

图1

图1   Co3O4@CNTs复合材料制备流程的示意图

Fig.1   Preparation process of Co3O4@CNTs composite


1.2 结构和性能表征

用D8 Advance X射线衍射(XRD)仪进行物相分析(扫描条件:Cu Kα辐射,λ=0.15406 nm,扫描范围:2θ=10°~80°,步长为0.02°,扫描速率为2°/min);用ZEISS SIGMA 300型扫描电子显微镜(SEM)观测产物的颗粒形貌;用 Thermo SCIENTIFIC ESCALAB 250Xi型X射线光电子能谱(XPS)进行元素价态分析。使用新威电池测试系统在室温下测试电池的循环性能和倍率性能,用Ivium-n-Stat型电化学工作站进行CV性能测试,测试范围0.01~3 V,扫描速率为0.1 mV·s-1。使用上海辰华电化学工作站进行交流阻抗测试(EIS),频率范围0.01~100 kHz,振幅为0.01 V·s-1

2 结果和讨论

2.1 Co3O4Co3O4@CNTs的晶体结构和形貌

图2给出了Co3O4和Co3O4@CNTs复合物的XRD图谱。由图2可见,两种材料都具有典型的面心立方Co3O4结构(JCPDS 43-1003),图谱中未出现杂质峰,峰型尖锐,说明产物纯度高,结晶性好[21,22]。在20°~30°区间Co3O4@CNTs复合材料中出现两个宽峰,对应碳纳米管(JCPDS.46-0944)的衍射峰[17,19]

图2

图2   Co3O4和Co3O4@CNTs的X射线衍射图谱

Fig.2   XRD pattern of Co3O4 and Co3O4@CNTs film samples


图3给出了Co3O4(图3a和b)和Co3O4@CNTs薄膜(图3c和d)的SEM照片。从图3a可以看出,Co3O4微球边缘分明,尺寸为1~2 μm,从图3b可见其表面粗糙,并观察到微球由直径为8~10 nm的一次颗粒团聚形成。从图3c可发现Co3O4颗粒紧密附着于碳纳米管上,并沿碳纳米管方向生长,颗粒尺寸约为200~500 nm,与粉末颗粒相近;从图3d可见Co3O4粒子填满碳纳米管之间的空隙,但是能分辨碳纳米管结构(方框部分),碳纳米管薄膜厚度达到8 μm左右。碳纳米膜的柔韧性良好,可在电池充放电过程中缓解Co3O4负极材料的体积膨胀,避免材料粉化脱落,提高负极材料的电化学循环稳定性。

图3

图3   Co3O4粉体和Co3O4@CNTs薄膜的扫描电镜照片

Fig.3   SEM images of Co3O4 power (a, b) and Co3O4@CNTs film (c, d)


XPS是一种表征材料表面元素价态的手段。从图4a可见,材料中含有Co(780.8 eV、796.4 eV)和O(531 eV)元素。在图4b的 Co高分辨图谱中出现两个主峰,分别位于780.8 eV和796.4 eV,对应Co 2p3/2和Co 2p1/2,是Co3O4典型的自旋轨道峰[30]。两峰之间的结合能差ΔB.E为15.6eV,峰强比约为2:1,更佐证了这一点[23]。位于780.6 eV和796.2 eV处的峰对应Co元素的+3价态,782.5 eV和797.7 eV对应Co元素的+2价态[24]。XPS结果进一步验证了合成粉体中只有Co3O4

图4

图4   Co3O4的X射线光电子能谱图

Fig.4   XPS patterns whole element (a) and high resolution of Co 2p (b) of Co3O4


2.2 Co3O4粉体和Co3O4@CNTs的电化学性能

图5给出了Co3O4和Co3O4@CNTs电极材料在0.01~3 V区间的循环伏安曲线。在首圈阴极扫描中,两种材料分别在0.76 V和0.79 V处存在极强的阴极峰,表明其负极材料循环过程中的不可逆容量,这是由于负极材料表面SEI膜的形成和副反应的产生。这是过渡金属氧化物负极材料的初始不可逆容量大,库伦效率低的主要原因[25,26]。在图5a中,阳极扫描曲线出现了两个明显的氧化峰(1.38 V和2.08 V),对应Co→Co2+/Co3+。在随后的扫描曲线中氧化峰峰位逐渐往高电压漂移,说明材料发生了极化,对应阴极峰仅出现在0.95V处,说明单纯合成的Co3O4粉体由于团聚到一起,阻碍了锂离子的嵌入通道。从图5b中可以看出,Co3O4@CNTs电极材料在0.91 V和1.30 V出现两个还原峰,对应放电过程中的Co3+→Co2+/Co2+→Co转变,相应的氧化峰出现在1.36 V和2.11 V对应金属Co向Co3O4的转变[27]。后续的CV曲线重合性高,还原电位更小,电流密度更高,说明该材料比纯Co3O4电极具有更强的储锂能力和更优异的循环稳定性。

图5

图5   Co3O4(a)和Co3O4@CNTs(b)薄膜电极的循环伏安曲线

Fig. 5   CVs of Co3O4 (a) and Co3O4@CNTs (b) electrode scanned between 0.01~3 V (vs. Li/Li+) at a scan rate of 0.1 mV·s-1


图6a和b分别给出了Co3O4和Co3O4@CNTs在50 mA·g-1电流密度下的充放电曲线。在图6a中,首次循环的放电平台在1V附近,与CV曲线相对应,放电比容量达到1117.8 mAh·g-1。在图6b中,Co3O4@CNTs电极也在1V处存在较长的放电平台,其容量达到2313.2 mAh·g-1。两种材料的初始比容量均远高于Co3O4的理论比容量,因为脱嵌锂过程引起副反应发生,SEI膜的形成也占据消耗了大量的Li+。Co3O4@CNTs膜材料首次库伦效率为68.2%,低于Co3O4材料的库伦效率72.2%。其主要原因是,碳纳米管薄膜在材料放电过程中容纳了部分金属锂,未完全释放出来[28]。在2nd和3rd循环中库伦效率上升至95%,且充放电曲线重合度极高,表明薄膜复合材料具有更好的循环稳定性。

图6

图6   电流密度为50 mA·g-1条件下Co3O4和Co3O4@CNTs薄膜电极材料的充放电曲线

Fig.6   Charge-Discharge curves of Co3O4 (a) and Co3O4@CNTs (b) at 50 mA·g-1 current density


图7给出了Co3O4和Co3O4@CNTs薄膜电极材料在不同倍率下的循环测试。在图7a中,Co3O4电极在前30次循环中容量衰减较快,之后衰减趋于平缓。在0.2C、0.5C、2C电流下100次循环后放电比容量分别为659.3 mAh·g-1、508.8 mAh·g-1和223.3 mAh·g-1,容量保持率为52%、44%、38.5%。图7b中,Co3O4@CNTs电极在0.2C、0.5C、1C、2C电流下表现出优于Co3O4粉体的电化学循环性能和容量保持率,约10次循环后容量基本达到平衡状态,100次循环后放电比容量分别达到1128.9 mAh·g-1、925.1 mAh·g-1、527.8 mAh·g-1(90次)、312.1 mAh·g-1,对应的容量保持率为66%、66.1%、53.8%、47.5%。

图7

图7   Co3O4和Co3O4@CNTs薄膜电极不同倍率下的循环性能

Fig.7   Cycle performance for Co3O4 (a) and Co3O4@CNTs (b) electrodes at different rate


为了进一步探究Co3O4和Co3O4@CNTs电极倍率性能,将两种材料置于不同电流下进行测试,如图8所示。可以看出,Co3O4@CNTs电极在0.2C、0.5C、1C、2C、5C电流下循环,其容量分别达到1356.5 mAh·g-1、1124.7 mAh·g-1、663.4 mAh·g-1、344.3 mAh·g-1、126.3 mAh·g-1;经过5C大倍率充放电后,在0.2C小电流下其放电比容量恢复1267 mAh·g-1,为初始值的91.8%;以0.1C低电流放电时容量达到1419.4 mAh·g-1,而Co3O4电极其容量仅为804 mAh·g-1、562.7 mAh·g-1、397.8 mAh·g-1、251.2 mAh·g-1、94.3 mAh·g-1、619.8 mAh·g-1,0.2C时可逆容量仅恢复到初始值的76.2%。这表明,Co3O4@CNTs电极具有优异的倍率性能,能在大电流放电过程中维持结构稳定。Co3O4@CNTs复合材料具有优异的电化学性能得益于Co3O4和CNTs协同作用,表面粗糙的Co3O4粒子能为Li+离子提供更多的反应活性位点,缩短Li+扩散路径。同时,碳纳米管具有优良的导电能力,Co3O4粒子附着于CNFs上可提高复合材料的导电性能。CNFs具有良好的机械性能,能在体积膨胀过程中稳定材料,避免粒子之间因团聚引发粉化和脱落。

图8

图8   Co3O4和Co3O4@CNTs薄膜电极不同倍率下的循环性能

Fig.8   Rate capability of Co3O4 and Co3O4@CNTs electrodes


图9给出了两种电极经历30次循环后进行测试后的Nyquist图,可印证Co3O4@CNTs复合材料降低材料内部电阻的性能。由图9可见,在中-高频区域出现的半圆对应锂离子在电极表面的扩散阻抗和电荷转移阻抗(Rct),在低频区出现的斜线代表锂离子在电解液中的扩散阻抗(W)。两种电极使用相同的电解质,所以高频区的电解质溶液电阻(Rs)非常接近,Co3O4@CNTs电极的Rct比Co3O4电极Rct低近200 Ω·cm2,其Rct与文献[29]报道的材料相近,说明电子在CNFs与Co3O4之间传导更快。其原因是,Co3O4粉体通过碳纳米管薄膜的分散利于活性材料与电解液的浸润,增大活性材料与电解液之间的接触面积,有利于减小锂离子迁移阻抗,且碳纳米管薄膜有利于电极表面的电子转移,进而使活性材料的电化学活性提高。

图9

图9   Co3O4和Co3O4@CNTs 薄膜电极的Nyquist图

Fig.9   Nyquist plots of Co3O4 and Co3O4@CNTs electrodes


将Co3O4@CNTs电极循环100次后进行拆解,观察其形貌变化。如图10a所示,Co3O4@CNTs在经过循环后颗粒膨胀,出现高低不平现象,并由原先的附着致密变成轻微的疏松,证实其在充放电过程中发生了体积膨胀,并出现了空隙,使电解液进入活性材料内部,增大了反应面积,缩短了扩散路径。在图10b中,经过盐酸酸化处理后可见碳纳米管纤维形貌维持原本形貌,仍有少部分Co3O4颗粒附着于碳纤维上,表明材料不易脱落。

图10

图10   Co3O4@CNTs薄膜电极循环100次和酸化处理CNTs薄膜的SEM图

Fig.10   SEM images of Co3O4@CNTs after 100 cycles (a) and after acidification (b)


3 结论

用简单一步水热法可制备出Co3O4@CNTs薄膜复合材料,直接用作锂离子电池的负电极。Co3O4纳米粒子能与碳纳米管薄膜复合,使其具有高比容量、高循环性能稳定和较高的倍率性能。在Co3O4@CNTs薄膜复合材料中碳纳米管薄膜形成三维空间导电网络使其电子传导特性提高。碳纳米管薄膜具有优异的机械性能,可在电化学循环过程中稳定材料的结构。Co3O4纳米粒子在碳纳米管薄膜上的高度分散和膜间隙有利于电解液的充分浸润,增大活性材料与电解液之间的接触面积,从而减小锂离子迁移阻抗、改善负极材料在电化学循环过程中的导电率低和降低体积膨胀的影响。

参考文献

An F Q, Zhao H L, Cheng Z, et al.

Development status and research progress of power battery for pure electric vehicles

[J]. Chin. J. Eng., 2019, 41: 22

[本文引用: 1]

(安富强, 赵洪量, 程志.

纯电动车用锂离子电池发展现状与研究进展

[J]. 工程科学学报, 2019, 41: 22)

[本文引用: 1]

Ai Q, Yang C X, Jiang G D, et al.

A novel SnO2@BNNSs@C composite nano-structure and its electrochemical energy storage characteristics

[J]. Mater. Eng., 2018, 46(11): 77

[本文引用: 1]

(艾青, 杨灿星, 江国栋.

一种新型SnO2@BNNSs@C纳米复合结构及其电化学储能特性

[J]. 材料工程, 2019, 46(11): 77)

[本文引用: 1]

Zhu X Q, Wang Z P, Wang C, et al.

An experimental study on overcharge behaviors of lithium-ion power battery with LiNi0.6Co0.2Mn0.2-O2 cathode

[J]. Automot. Eng., 2019, 41(5): 582

[本文引用: 1]

(朱晓庆, 王震坡, 王聪.

三元锂离子动力电池过充行为特性实验研究

[J]. 汽车工程, 2019, 41(5): 582)

[本文引用: 1]

Chou S L, Wang J Z, Liu H K, et al.

Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery

[J]. J. Power Sour., 2008, 182: 359

[本文引用: 1]

Jan S S. Nurgul S. Shi X Q,et al.

Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification

[J]. Electrochim. Acta, 2014, 149: 86

He L, Xu J M, Wang Y J, et al.

LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13-O2 as cathode materials with high coulombic efficiency and improved cyclability for Li-ion batteries

[J]. Acta Phys. Chim. Sin., 2017, 33: 1605

(何磊, 徐俊敏, 王永建.

LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13-O2锂离子电池正极材料: 增强的库伦效率和循环性能

[J]. 物理化学学报, 2017, 33: 1605)

Qiu Q Q, Shadike Z, Wang Q C, et al.

Improving the electrochemical performance and structural stability of the LiNi0.8Co0.15Al0.05O2 cathode material at high-voltage charging through Ti substitution

[J]. ACS Appl. Mater. Interfaces, 2019, 26: 23213

[本文引用: 1]

Wang L, Zhao D D, Liu X, et al.

Hydrothermal for synthesis of CoO nanoparticles/graphene composite as li-ion battery anodes

[J]. Acta Chim. Sin., 2017, 75: 231

[本文引用: 1]

(王蕾, 赵冬冬, 刘旭.

水热法合成氧化亚钴纳米粒子/石墨烯复合材料及其储锂性能研究

[J]. 化学学报, 2017, 75: 231)

[本文引用: 1]

Donders M E, Knoops H C M, Kessels W M M, et al.

Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition

[J]. J. Power Sour., 2012, 203: 72

[本文引用: 1]

Zhan L, Wang S Q, Ding L X, et al.

Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries

[J]. Electrochim. Acta, 2014, 135: 35

[本文引用: 1]

Liang H M, Wang Z X, Guo H J, et al.

Unique porous yolk-shell structured Co3O4 anode for high performance lithium ion batteries

[J]. Ceram. Int., 2017, 43: 11058

[本文引用: 1]

Huang G Y, Xu S M, Lu S S, et al.

Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries

[J]. Electrochim. Acta, 2014, 135: 420

[本文引用: 1]

Li T, Li X H, Wang Z X, et al.

Synthesis of nanoparticles-assembled Co3O4 microspheres as anodes for Li-ion batteries by spray pyrolysis of CoCl2 solution

[J]. Electrochim. Acta, 2016, 209: 456

[本文引用: 1]

Wang S F, Zhu Y P, Xu X M, et al.

Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries

[J]. Energy, 2017, 125: 569

[本文引用: 1]

Guo D Y, Pan L, Hao J M, et al.

Nanosheets-in-nanotube Co3O4-carbon array design enables stable Li-ion storage

[J]. Carbon, 2019, 147: 501

[本文引用: 1]

Chi X N, Chang L, Xie D, et al.

Hydrothermal preparation of Co3O4/graphene composite as anode material for lithium-ion batteries

[J]. Mater. Lett., 2013, 106: 178

[本文引用: 1]

Jiang Y, Yan X M, Xiao W, et al.

Co3O4-graphene nanoflowers as anode for advanced lithium ion batteries with enhanced rate capability

[J]. J. Alloys Compd., 2017, 710: 114

DOI      URL     [本文引用: 2]

Yoon T H, Park Y J.

Electrochemical properties of CNTs/Co3O4 blended-anode for rechargeable lithium batteries

[J]. Solid State Ion., 2012, 225: 498

[本文引用: 1]

Li Y F, Fu Y Y, Liu W B, et al.

Hollow Co-Co3O4@CNTs derived from ZIF-67 for lithium ion batteries

[J]. J. Alloys Compd., 2019, 784: 439

[本文引用: 2]

Foster J M, Huang X, Jiang M, et al.

Causes of binder damage in porous battery electrodes and strategies to prevent it

[J]. J. Power Sour., 2017, 350: 140

[本文引用: 1]

Wu Z S, Ren W C, Wen L, et al.

Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance

[J]. ACS Nano, 2010, 4: 3187

DOI      URL     PMID      [本文引用: 1]

We report a facile strategy to synthesize the nanocomposite of Co(3)O(4) nanoparticles anchored on conducting graphene as an advanced anode material for high-performance lithium-ion batteries. The Co(3)O(4) nanoparticles obtained are 10-30 nm in size and homogeneously anchor on graphene sheets as spacers to keep the neighboring sheets separated. This Co(3)O(4)/graphene nanocomposite displays superior Li-battery performance with large reversible capacity, excellent cyclic performance, and good rate capability, highlighting the importance of the anchoring of nanoparticles on graphene sheets for maximum utilization of electrochemically active Co(3)O(4) nanoparticles and graphene for energy storage applications in high-performance lithium-ion batteries.

Jadhav H S, Rai A K, Lee J Y, et al.

Enhanced electrochemical performance of flower-like Co3O4 as an anode material for high performance lithium-ion batteries

[J]. Electrochim. Acta, 2014, 146: 270

[本文引用: 1]

Sun L N, Deng Q W, Li Y L, et al.

CoO-Co3O4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries

[J]. Electrochim. Acta, 2017, 241: 252

DOI      URL     [本文引用: 1]

Chen F, Yuan Y F, Ye L W, et al.

Co3O4 nanocrystalline-assembled mesoporous hollow polyhedron nanocage-in-nanocage as improved performance anode for lithium-ion batteries

[J]. Mater. Lett., 2019, 237: 213

[本文引用: 1]

Liu Y G, Wan H C, Jiang N, et al.

Chemical reduction-induced oxygen deficiency in Co3O4 nanocubes as advanced anodes for lithium ion batteries

[J]. Solid State Ion., 2019, 334: 117

[本文引用: 1]

Chen W, Nie Y Y, Sun X G, et al.

Performance of lithium-ion capacitors using pre-lithiated multi-walled carbon nanotube composite anode

[J]. Chin. J. Mater. Res., 2019, 33: 371

[本文引用: 1]

(陈炜, 聂艳艳, 孙晓刚.

预嵌锂多壁碳纳米管的性能

[J]. 材料研究学报, 2019, 33: 371)

[本文引用: 1]

Huang R, Li Y F, Song Y H, et al.

Facial preparation of N-doped carbon foam supporting Co3O4 nanorod arrays as free-standing lithium-ion batteries’s anode

[J]. J. Alloys Compd., 2019, 818: 152839

[本文引用: 1]

Marzuki N S, Tai N U, Hassan M F, et al.

Enhanced lithium storage in Co3O4/carbon anode for Li-ion batteries

[J]. Electrochim. Acta, 2015, 182: 452

[本文引用: 1]

Feng K, Park H W, Wang X L, et al.

High performance porous anode based on template-free synthesis of Co3O4 nanowires for lithium-ion batteries

[J]. Electrochim. Acta, 2014, 139: 145

[本文引用: 1]

/