Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (4): 290-300    DOI: 10.11901/1005.3093.2017.301
  研究论文 本期目录 | 过刊浏览 |
马氏体板条控制单元对20CrNi2Mo钢韧性的影响
卢叶茂1,2,3,4, 梁益龙1,2,3,4(), 龙绍檑1,2,3,4, 尹存宏2,3,4, 杨明1,2,3,4
1 贵州大学材料与冶金学院 贵阳 550025
2 贵州省材料结构与强度重点实验室 贵阳 550025
3 贵州省高性能金属结构材料与制造技术工程实验室 贵阳 550025
4 高性能金属结构材料与制造技术国家地方联合工程实验室 贵阳 550025
Effect of the Martensite Lath on Toughness of 20CrNi2Mo Steel
Yemao LU1,2,3,4, Yilong LIANG1,2,3,4(), Shaolei LONG1,2,3,4, Cunhong YIN2,3,4, Ming YANG1,2,3,4
1 College of Materials and Metallurgy, University of Guizhou, Guiyang 550025, China
2 Key Laboratory for Material Structure and Strength of Guizhou Province, Guiyang 550025, China
3 Guizhou Key Laboratory of High Performance Metal Structure and Manufacture Technology, Guiyang 550025,China
4 National Local Co-construction Engineering Laboratory for High Performance Metal Structure Material and Manufacture Technology, Guiyang 550025, China
引用本文:

卢叶茂, 梁益龙, 龙绍檑, 尹存宏, 杨明. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响[J]. 材料研究学报, 2018, 32(4): 290-300.
Yemao LU, Yilong LIANG, Shaolei LONG, Cunhong YIN, Ming YANG. Effect of the Martensite Lath on Toughness of 20CrNi2Mo Steel[J]. Chinese Journal of Materials Research, 2018, 32(4): 290-300.

全文: PDF(9688 KB)   HTML
摘要: 

测试了不同淬火温度下20CrNi2Mo低碳钢的冲击韧性和断裂韧性,并使用OM、SEM、EBSD、TEM定量分析了试验钢的多层次组织。结果表明,在1200℃淬火处理的试样具有较好的韧性,断裂韧性和冲击韧性的最大增幅分别为43.58%和27.78%。同时,随着淬火温度的提高试验钢原奥氏体晶粒(d r)、马氏体束(dp)、马氏体块(d b)增大,而马氏体板条(d l)略微减小。根据裂纹扩展路径和韧窝尺寸分析并结合Hall-Petch关系,证明了马氏体板条是韧性的有效控制单元。同时,根据EBSD应力分析揭示了裂纹扩展的塑性变形能,并计算了断裂韧性和冲击韧性在裂纹扩展过程中的能量关系。

关键词 金属材料板条马氏体钢控制单元冲击韧性断裂韧性形变能    
Abstract

The impact toughness and fracture toughness were studied for 20CrNi2Mo steel quenching at different temperatures and the hierarchical microstructures obtained were investigated by OM, SEM, EBSD and TEM. Results showed that materials quenching at 1200℃ had best toughness in which the fracture toughness and impact absorption energy increased 43.58% and 27.78%, respectively. The size of prior austenite grain (dr), packet (dp) and block (db) was increased with the increase of quenching temperature, while the martensite lath (d l) was decreased slightly with the coarsen of prior austenite grain. It was proved that the effective control unit of toughness for the tested steel was martensite lathes by crack propagation path analyzing and the statistic of dimple size combined with the Hall-Petch formula. In addition, the difference of plastic deformation was declared by EBSD and the relationship between fracture toughness and impact toughness during crack propagation process was calculated.

Key wordsmetallic materials    lath martnesite steel    control unit    impact toughness    fracture toughness    deformation energy
收稿日期: 2017-05-09     
基金资助:资助项目 国家自然科学基金(51461006和51671060)
作者简介:

作者简介 卢叶茂,男,1992年生,硕士生

C Si Mn S P Cr Ni Mo Cu
0.208 0.255 0.666 ≤0.01 ≤0.015 0.674 1.698 0.262 0.024
表1  20CrNi2Mo的化学成分(质量分数,%)
图1  20CrNi2Mo钢的热处理工艺图
图2  Charpy U型试样和断裂韧性试样
图3  不同热处理状态下J积分与裂纹扩展量△a的关系
图4  不同淬火温度下的晶粒尺寸与冲击吸收功和断裂韧性的关系
图5  在不同温度淬火的20CrNi2Mo钢的OM、SEM、EBSD、TEM像。
Austenitizing
temperature/℃
Prior austenite grain size/μm Packet
size/μm
Block size
/μm
Lath width
/μm
900℃ 9.65 4.16 1.70 0.277
1000℃ 12.61 6.19 2.62 0.263
1100℃ 39.23 11.38 3.72 0.257
1200℃ 93.46 35.61 5.90 0.246
表2  20CrNi2Mo钢不同热处理状态下多层次组织
图6  900℃和1200℃淬火状态下冲击试样裂纹扩展区SEM像
Austenitizing
temperature /°C
Crack length of crossing packet, L'/μm Total length of crack in growth zone, L/μm Percent of L' in the total crack length/%
900 2584.5 4932.3 52.4
1200 2508.4 3983.5 61.4
表3  裂纹扩展过程中穿马氏体束的比例
图7  平均韧窝尺寸和淬火温度的关系
图8  20CrNi2Mo钢多层次组织参量和平均韧窝尺寸的关系
图9  20CrNi2Mo钢的韧性与马氏体多层次组织的关系
Austenitizing
temperature/℃
2δIC/μm Prior austenite grain size/μm Packet
Size/μm
Block size/μm Lath width/μm JIC/kJ·m-2 CUN/J
900 59.27 9.65 4.16 1.70 0.277 70.78 63.9
1000 65.53 12.61 6.19 2.62 0.263 78.91 70.15
1100 75.71 39.23 11.38 3.72 0.257 86.74 81.9
1200 80.94 93.46 35.61 5.90 0.246 90.44 91.75
表4  不同淬火温度下断裂韧度、冲击韧性以及高应变塑性区
图10  不同晶粒尺寸对应的高应变塑性区
Austenitizing
temperature/℃
Impact sample
fractogragh
Fracture toughness
sample fractogragh
Normal
sample
900℃ 10.805 14.362 10.729
1200℃ 12.901 22.765 12.405
表5  900℃和1200℃淬火试样中小角度晶界含量(%)
图11  裂纹附近的小角度晶界分布
图12  断裂韧性试样裂尖应力等高线
图13  高应变塑性区宽度和相对应变量的关系
[1] Han J, Silva A K D, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel[J]. Acta Mater. 2017, 122: 199
[2] Kuzmina M, Ponge D, Raabe D.Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel[J]. Acta Mater. 2015, 86: 182
[3] Koyama M, Zhang Z, Wang M, et al.Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science. 2017, 355(6329): 1055
[4] Song S H, Faulkner R G, Flewitt P E J. Effect of boron on phosphorus-induced temper embrittlement[J]. J. Mater. Sci. 1999, 34(22): 5549
[5] Grange R A.Strengthening steel by austenite grain refinement[J]. ASM-Trans. 1966, 59(1)
[6] Krauss G. Martensite in steel: strength and structure[J]. Jater. Sci. Eng. A.1999, s 273-275(99): 40
[7] Roberts M J.Effect of transformation substructure on the strength and toughness of Fe-Mn alloys[J]. Metall Trans. 1970, 1(12): 3287
[8] Zong B W, Song Y W.Effect of the effective grains in ultra-high steel on its toughness[J]. Met. Sci. Technol., 1985, (4): 43(钟炳文, 宋宇文. 超高强度钢中有效晶粒对韧性的影响[J]. 材料科学与工艺, 1985(4): 43)
[9] Lan H F, Du L X, Li Q, et al.Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size[J]. J. Alloys Compd. 2017, 710: 702
[10] S. Morito, H. Tanaka, R. Konishi, et al., The morphology and crystallography of lath martensite in Fe-C alloys[J], Acta Mater. 2003, 51(6): 1789
[11] Zhang X L, Zhuang C J, Ji L K.Characteristic parameters of high grade pipeline steels and Its relationship with toughness[J]. J. Mater. Eng., 2008, (8): 3(张小立, 庄传晶, 吉玲康等. 高钢级管线钢的特征参量及其与强韧性的关系[J]. 材料工程, 2006, (8): 3)
[12] Luo Z, Shen J, Su H, Ding Y, Yang C, Zhu X.Effect of Substructure on Toughness of Lath Martensite/Bainite Mixed Structure in Low-Carbon Steels[J], J. Iron. Steel Res. Int. 2010, 17(11): 40
[13] Wang C F, Wang M Q, Shi J, et al.Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scr.Mater, 2008, 58(6): 492
[14] Morito S, Huang X, Furuhara T, et al.The morphology and crystallography of lath martensite in alloy steels[J]. Acta Mater. 2006, 54(19): 5323
[15] Long S L, Liang Y L, Jiang Y, et al.Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J]. Mater. Sci. Eng. A. 2016, 676: 38
[16] Cui Q F, Hui H, Wang H Y, et al.Applicability of empirical correlations between impact energy and fracture toughness for Q345R steel[J]. Materials for Mechanical Engineering, 2015, 39(12): 84(崔庆丰, 惠虎, 王昊旸等. 冲击功与断裂韧度经验关系式对Q345R 钢的适用性[J]. 机械工程材料, 2015, 39(12): 84)
[17] Xu C G, Yu G.A discussion on the relationship between impact toughness and fracture toughness[J]. Acta Aeronaut. Astronaut. Sin. 1990, 11(4): 182(许昌淦, 余刚. 冲击韧性与断裂韧性间关系的探讨[J]. 航空学报, 1990, 11(4): 182)
[18] Zhao J W, Zhang W, Zou D N.Effect of Quenching temperature and cooling manner on the property of the high speed steel roll[J]. Foundry Technology, 2005
[19] Ma P, Li Q, Tang G Q, et al.Carbide dissolution and grain growth behavior of Cr5 steel used as cold work roller during austenitizing. Mater. Mech. Eng. 2010, 34(6): 21(马坪, 李倩, 唐志国等. 冷轧工作辊用Cr5钢奥氏体化时碳化物的溶解及晶粒长大行为[J]. 机械工程材料, 2010, 34(6): 21)
[20] Tan Y H, Ma Y X.Martensite New Morphology[M]. Beijing: Metallurgical Industry Press, 2013(谭玉华, 马跃新. 马氏体新形态学 [M]. 北京: 冶金工业出版社, 2013)
[21] Xu Z Y.Effect of lath martensite morphology on the mechanical properties of steel[J], Heat Hreat, 2009, 24(3): 1(徐祖耀. 条状马氏体形态对钢力学性质的影响[J]. 热处理, 2009, 24(3): 1)
[22] Zheng C Q.A Preliminary Study on Micromechanics of Ductile fracture and Application[M], Xi'an: Northwestern ploytechnical university press, 1988(郑长卿. 韧性断裂细观力学的初步研究及其应用[M]. 西安: 西北工业大学出版社, 1988)
[23] Liang Y L, Long S L, Xu P W, et al.The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel[J]. Mater. Sci. Eng. A. 2017, 695: 154
[24] Liang Y L, Lei M, Zhong S H, et al.The relationship between fracture toughness and notch toughness, tensile ductilities in lath martensite steel[J]. Acta Metall. Sin, 1998, (09): 950(梁益龙, 雷旻, 钟蜀辉等. 板条马氏体钢的断裂韧性与缺口韧性、拉伸塑性的关系[J], 金属学报, 1998, (09): 950)
[25] Hu J, Lin D L.A study of microstructural evolution of coarse-grained Ni-42Al alloy during superplastic deformation using EBSD analysis[J]. Iron Steel, 2008, 29(04): 91(胡静, 林栋樑. 大晶粒Ni-42Al合金超塑变形中组织演变EBSD分析[J]. 材料热处理学报, 2008, 29(04): 91)
[26] Liang X k, Sun X J, Liu Q Y, et al. Mechanism s of plastic deformation of ultrafine grained steel at different temperatures[J]. Iron Steel, 2004, (11): 5(梁小凯, 孙新军, 刘清友等. 超细晶钢在不同温度下塑性变形机制的研究[J]. 钢铁, 2004, (11): 5)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.