|
|
马氏体板条控制单元对20CrNi2Mo钢韧性的影响 |
卢叶茂1,2,3,4, 梁益龙1,2,3,4( ), 龙绍檑1,2,3,4, 尹存宏2,3,4, 杨明1,2,3,4 |
1 贵州大学材料与冶金学院 贵阳 550025 2 贵州省材料结构与强度重点实验室 贵阳 550025 3 贵州省高性能金属结构材料与制造技术工程实验室 贵阳 550025 4 高性能金属结构材料与制造技术国家地方联合工程实验室 贵阳 550025 |
|
Effect of the Martensite Lath on Toughness of 20CrNi2Mo Steel |
Yemao LU1,2,3,4, Yilong LIANG1,2,3,4( ), Shaolei LONG1,2,3,4, Cunhong YIN2,3,4, Ming YANG1,2,3,4 |
1 College of Materials and Metallurgy, University of Guizhou, Guiyang 550025, China 2 Key Laboratory for Material Structure and Strength of Guizhou Province, Guiyang 550025, China 3 Guizhou Key Laboratory of High Performance Metal Structure and Manufacture Technology, Guiyang 550025,China 4 National Local Co-construction Engineering Laboratory for High Performance Metal Structure Material and Manufacture Technology, Guiyang 550025, China |
引用本文:
卢叶茂, 梁益龙, 龙绍檑, 尹存宏, 杨明. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响[J]. 材料研究学报, 2018, 32(4): 290-300.
Yemao LU,
Yilong LIANG,
Shaolei LONG,
Cunhong YIN,
Ming YANG.
Effect of the Martensite Lath on Toughness of 20CrNi2Mo Steel[J]. Chinese Journal of Materials Research, 2018, 32(4): 290-300.
[1] | Han J, Silva A K D, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel[J]. Acta Mater. 2017, 122: 199 | [2] | Kuzmina M, Ponge D, Raabe D.Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel[J]. Acta Mater. 2015, 86: 182 | [3] | Koyama M, Zhang Z, Wang M, et al.Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science. 2017, 355(6329): 1055 | [4] | Song S H, Faulkner R G, Flewitt P E J. Effect of boron on phosphorus-induced temper embrittlement[J]. J. Mater. Sci. 1999, 34(22): 5549 | [5] | Grange R A.Strengthening steel by austenite grain refinement[J]. ASM-Trans. 1966, 59(1) | [6] | Krauss G. Martensite in steel: strength and structure[J]. Jater. Sci. Eng. A.1999, s 273-275(99): 40 | [7] | Roberts M J.Effect of transformation substructure on the strength and toughness of Fe-Mn alloys[J]. Metall Trans. 1970, 1(12): 3287 | [8] | Zong B W, Song Y W.Effect of the effective grains in ultra-high steel on its toughness[J]. Met. Sci. Technol., 1985, (4): 43(钟炳文, 宋宇文. 超高强度钢中有效晶粒对韧性的影响[J]. 材料科学与工艺, 1985(4): 43) | [9] | Lan H F, Du L X, Li Q, et al.Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size[J]. J. Alloys Compd. 2017, 710: 702 | [10] | S. Morito, H. Tanaka, R. Konishi, et al., The morphology and crystallography of lath martensite in Fe-C alloys[J], Acta Mater. 2003, 51(6): 1789 | [11] | Zhang X L, Zhuang C J, Ji L K.Characteristic parameters of high grade pipeline steels and Its relationship with toughness[J]. J. Mater. Eng., 2008, (8): 3(张小立, 庄传晶, 吉玲康等. 高钢级管线钢的特征参量及其与强韧性的关系[J]. 材料工程, 2006, (8): 3) | [12] | Luo Z, Shen J, Su H, Ding Y, Yang C, Zhu X.Effect of Substructure on Toughness of Lath Martensite/Bainite Mixed Structure in Low-Carbon Steels[J], J. Iron. Steel Res. Int. 2010, 17(11): 40 | [13] | Wang C F, Wang M Q, Shi J, et al.Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scr.Mater, 2008, 58(6): 492 | [14] | Morito S, Huang X, Furuhara T, et al.The morphology and crystallography of lath martensite in alloy steels[J]. Acta Mater. 2006, 54(19): 5323 | [15] | Long S L, Liang Y L, Jiang Y, et al.Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J]. Mater. Sci. Eng. A. 2016, 676: 38 | [16] | Cui Q F, Hui H, Wang H Y, et al.Applicability of empirical correlations between impact energy and fracture toughness for Q345R steel[J]. Materials for Mechanical Engineering, 2015, 39(12): 84(崔庆丰, 惠虎, 王昊旸等. 冲击功与断裂韧度经验关系式对Q345R 钢的适用性[J]. 机械工程材料, 2015, 39(12): 84) | [17] | Xu C G, Yu G.A discussion on the relationship between impact toughness and fracture toughness[J]. Acta Aeronaut. Astronaut. Sin. 1990, 11(4): 182(许昌淦, 余刚. 冲击韧性与断裂韧性间关系的探讨[J]. 航空学报, 1990, 11(4): 182) | [18] | Zhao J W, Zhang W, Zou D N.Effect of Quenching temperature and cooling manner on the property of the high speed steel roll[J]. Foundry Technology, 2005 | [19] | Ma P, Li Q, Tang G Q, et al.Carbide dissolution and grain growth behavior of Cr5 steel used as cold work roller during austenitizing. Mater. Mech. Eng. 2010, 34(6): 21(马坪, 李倩, 唐志国等. 冷轧工作辊用Cr5钢奥氏体化时碳化物的溶解及晶粒长大行为[J]. 机械工程材料, 2010, 34(6): 21) | [20] | Tan Y H, Ma Y X.Martensite New Morphology[M]. Beijing: Metallurgical Industry Press, 2013(谭玉华, 马跃新. 马氏体新形态学 [M]. 北京: 冶金工业出版社, 2013) | [21] | Xu Z Y.Effect of lath martensite morphology on the mechanical properties of steel[J], Heat Hreat, 2009, 24(3): 1(徐祖耀. 条状马氏体形态对钢力学性质的影响[J]. 热处理, 2009, 24(3): 1) | [22] | Zheng C Q.A Preliminary Study on Micromechanics of Ductile fracture and Application[M], Xi'an: Northwestern ploytechnical university press, 1988(郑长卿. 韧性断裂细观力学的初步研究及其应用[M]. 西安: 西北工业大学出版社, 1988) | [23] | Liang Y L, Long S L, Xu P W, et al.The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel[J]. Mater. Sci. Eng. A. 2017, 695: 154 | [24] | Liang Y L, Lei M, Zhong S H, et al.The relationship between fracture toughness and notch toughness, tensile ductilities in lath martensite steel[J]. Acta Metall. Sin, 1998, (09): 950(梁益龙, 雷旻, 钟蜀辉等. 板条马氏体钢的断裂韧性与缺口韧性、拉伸塑性的关系[J], 金属学报, 1998, (09): 950) | [25] | Hu J, Lin D L.A study of microstructural evolution of coarse-grained Ni-42Al alloy during superplastic deformation using EBSD analysis[J]. Iron Steel, 2008, 29(04): 91(胡静, 林栋樑. 大晶粒Ni-42Al合金超塑变形中组织演变EBSD分析[J]. 材料热处理学报, 2008, 29(04): 91) | [26] | Liang X k, Sun X J, Liu Q Y, et al. Mechanism s of plastic deformation of ultrafine grained steel at different temperatures[J]. Iron Steel, 2004, (11): 5(梁小凯, 孙新军, 刘清友等. 超细晶钢在不同温度下塑性变形机制的研究[J]. 钢铁, 2004, (11): 5) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|