Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (7): 537-546    DOI: 10.11901/1005.3093.2016.396
  研究论文 本期目录 | 过刊浏览 |
新型轻质奥氏体耐磨钢的冲击磨损性能及其机理研究
彭世广1, 宋仁伯1, 蔡长宏1, 裴中正1, 郭客2,3, 王忠红3, 高景俊4
1 北京科技大学材料科学与工程学院 北京 100083
2 辽宁科技大学化学工程学院 鞍山 117022
3 鞍钢集团矿业设计研究院 鞍山 114004
4 鞍钢集团矿业公司 鞍山 114001
Impact Wear Behavior of a Novel Light-weight Austenitic Wear-resistant Steel
Shiguang PENG1, Renbo SONG1, Changhong CAI1, Zhongzheng PEI1, Ke GUO2,3, Zhonghong WANG3, Jingjun GAO4
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 117022, China
3 Angang Group Mining Engineering Corporation, Anshan 114004, China
4 Anshan Iron and Steel Group Mining Company, Anshan 114001, China
引用本文:

彭世广, 宋仁伯, 蔡长宏, 裴中正, 郭客, 王忠红, 高景俊. 新型轻质奥氏体耐磨钢的冲击磨损性能及其机理研究[J]. 材料研究学报, 2017, 31(7): 537-546.
Shiguang PENG, Renbo SONG, Changhong CAI, Zhongzheng PEI, Ke GUO, Zhonghong WANG, Jingjun GAO. Impact Wear Behavior of a Novel Light-weight Austenitic Wear-resistant Steel[J]. Chinese Journal of Materials Research, 2017, 31(7): 537-546.

全文: PDF(8749 KB)   HTML
摘要: 

以高锰钢Mn13Cr2为对比材料,采用MLD-10冲击磨料磨损试验机,选择低冲击载荷0.5 J,研究新型轻质Fe-24Mn-7Al-1.0C奥氏体耐磨钢在水韧处理和水韧处理+时效后的耐磨性能及磨损机理。结果表明,轻质奥氏体钢Fe-24Mn-7Al-1.0C在水韧处理后其耐磨性是Mn13Cr2的1.14倍;550℃不同时间时效后,由于大量的纳米尺寸κ-碳化物析出,增加了其初始硬度、强度和耐磨性,1050℃水韧处理+550℃时效1 h后其耐磨性达到最佳,为Mn13Cr2的1.40倍。Mn13Cr2磨损表面主要以长而宽且凹凸不平的犁沟和反复塑性变形导致的较深凿坑为主,轻质奥氏体钢Fe-24Mn-7Al-1.0C以微小凿坑和较浅犁沟为主。在Mn13Cr2的冲击亚表层形成大量层错以及凌乱分布的位错。轻质奥氏体钢Fe-24Mn-7Al-1.0C时效前的亚表层出现大量的泰勒晶格,并在时效1 h后呈现泰勒晶格和高密度位错墙,在磨损表面并没有发现孪晶和马氏体相变现象。

关键词 金属材料轻质奥氏体钢水韧处理+时效冲击磨损κ-碳化物泰勒晶格    
Abstract

The wear resistance and wear mechanism of a novel light-weight Fe-24Mn-7Al-1.0C austenitic steel after water quenching (Q) and water quenching-aging (Q-A) treatments were studied by comparing with the Mn13Cr2. The impact wear tests were carried out by using MLD-10 abrasive wear testing tester under low impact energy condition (0.5 J). Results show that the wear resistance of Fe-24Mn-7Al-1.0C steel is 1.14 times higher than that of the water quenched Mn13Cr2. A large number of nano-sized (Fe, Mn)3AlC κ-carbide precipitates increase the initial hardness, strength and wear resistance of the steel after aging treatment at 550℃ for different time. The wear resistance of Fe-24Mn-7Al-1.0C steel is optimum after 1050℃ quenching and aging 1 h at 550℃, which is 1.40 times higher than that of Mn13Cr2. The worn surfaces of Mn13Cr2 consist of wide, long, uneven grooves and deep peeling pits, of which the formation may be ascribed to the repeated plastic deformation, while worn surfaces of the Fe-24Mn-7Al steel consist of tiny peeling pits and light grooves. Many stacking faults and dislocations in different directions are found on the subsurface of Mn13Cr2. Many Taylor lattices are found at the impact subsurface of Fe-24Mn-7Al steel before aging treatments. After aging treatment for 1 h at 550℃, Taylor lattices and high-density dislocations are found, but no twins and martensitic transformation appear on the worn surface.

Key wordsmetallic materials    light-weight austenitic steel    water quenching-aging    impact wear    κ- carbide    Taylor lattices
收稿日期: 2016-07-11     
ZTFLH:  TG142. 25  
作者简介:

作者简介 彭世广,男,1987年生,博士生

Steels C Si Mn Al Cr Mo B P S
Fe-24Mn-7Al-1.0C 1.02 0.34 23.80 7.10 - - 0.0042 0.01 0.013
Mn13Cr2 1.03 0.97 12.71 - 2.02 0.71 - 0.03 0.033
表1  实验材料的化学成分
图1  冲击磨损试验机结构原理图
图2  Mn13Cr2和Fe-24Mn-7Al-1.0C的真实应力-应变曲线和加工硬化曲线
Materials Process Rm/MPa Rp0.2/MPa A/% ak/Jcm-2 Initial hardness (HB) After wear (HB)
Mn13Cr2 Q 740 390 20 160 220 302
Fe-24Mn-7Al-1.0C Q 785 409 59 231 205 357
Q-A (1 h) 800 500 43 193 237 378
Q-A (2 h) 840 630 32 156 271 362
Q-A (3 h) 884 688 27 75 285 364
Q-A (4 h) 897 736 25 65 308 372
表2  不同热处理工艺条件下实验材料的力学性能
图3  Mn13Cr2和Fe-24Mn-7Al-1.0C的显微组织形貌
图4  不同热处理工艺条件下Fe-24Mn-7Al-1.0C的基体组织及选区电子衍射花样
图5  不同热处理工艺条件下Fe-24Mn-7Al-1.0C的XRD
图6  Mn13Cr2和Fe-24Mn-7Al-1.0C钢的耐磨性以及相对耐磨性
图7  水韧处理后的Mn13Cr2以及不同热处理工艺处理后的Fe-24Mn-7Al-1.0C的冲击磨损表面形貌SEM像
图8  水韧处理后的Mn13Cr2以及不同热处理工艺处理后的Fe-24Mn-7Al-1.0C 的冲击磨损亚表面形貌TEM像
[1] Yang F Q, Song R B, Li Y P, et al.Tensile deformation of low density duplex Fe-Mn-Al-C steel[J]. Mater. Des., 2015, 76: 32
[2] Zhang L F, Song R B, Zhao C, et al.Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel[J]. Mater. Sci. Eng., 2015, 640: 225
[3] Chen M S, Cheng H C, Huang C F, et al.Effects of C and Cr content on high-temperature microstructures of Fe-9Al-30Mn-xC-yCr alloys[J]. Mater. Charact., 2010, 61(2): 206
[4] Brüx U, Frommeyer G, Gr?ssel O, et al.Development and characterization of high strength impact resistant Fe-Mn-(Al-, Si) TRIP/TWIP steels[J]. Steel Res. Int., 2002, 73(6-7): 294
[5] Kalashnikov I S, Acselrad O, Shalkevich A, et al.Heat treatment and thermal stability of FeMnAlC alloys[J]. Mater. Process. Technol., 2003, 136(1-3): 72
[6] Sohn S S, Lee B J,Lee Set al. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel[J]. Acta Mater., 2013, 61(15): 5626
[7] Wang C J, Chang Y C.NaCl-induced hot corrosion of Fe-Mn-Al-C alloys[J]. Mater. Chem. Phys., 2002, 76(2): 151
[8] Lins V F C, Freitas M A, Silva E M P E. Corrosion resistance study of Fe-Mn-Al-C alloys using immersion and potentiostatic tests[J]. Appl. Surf. Sci., 2005, 250(1-4): 124
[9] Yang F Q, Song R B, Sun T, et al.Microstructure and mechanical properties of Fe-Mn-Al light-weight high strength steel[J]. Acta Metall. Sin., 2014, 50(8):897(杨富强,宋仁伯,孙挺等. Fe-Mn-Al轻质高强钢组织和力学性能研究[J]. 金属学报, 2014, 50(8):897)
[10] Cheng W C, Cheng C Y, Hsu C W, et al.Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel[J]. Mater. Sci. Eng., 2015, 642: 128
[11] Wu Z Q, Ding H, An X H, et al.Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content[J]. Mater. Sci. Eng., 2015, 639: 187
[12] Acselrad O, de Souza A R, Kalashnikov I S, et al. A first evaluation of the abrasive wear of an austenitic FeMnAlC steel[J]. Wear, 2004, 257(9-10): 999
[13] Abbasi M, Kheirandish S, Kharrazi Y,et al.On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels[J]. Wear, 2010, 268(1-2): 202
[14] Choi K.,Seo C. H.,Lee H.,et al.Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel[J]. Scr. Mater., 2010, 63(10): 1028
[15] Hwang C N, Liu T F.The as-quenched microstructures of Fe-9Al-30Mn-1.2C-xSi alloys[J]. Scr. Mater., 1997, 36(8): 853
[16] Park K, Hwang S W, Son C Y, et al.Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C low-density steel[J]. JOM, 2014, 66(9): 1828
[17] Lu Z, Zhou Y, Rao Q, et al.An investigation of the abrasive wear behavior of ductile cast iron[J]. J. Mater. Process Technol., 2001, 116(2-3): 176
[18] Zuidema B K, Subramanyam D K, Leslie W C.The Effect of Aluminum on the work hardening and wear resistance of Hadfield manganese steel[J]. Metall. Trans., 1987, 18A: 1629
[19] Talonen J, H?nninen H.Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels[J]. Acta Mater., 2007, 55(18): 6108
[20] Gutierrez-Urrutia I, Raabe D.Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel[J]. Acta Mater., 2012, 60(16): 5791
[21] Bay B, Hansen N, Kuhlmann-Wilsdorf D.Deformation structures in lightly rolled pure aluminum[J]. Mater. Sci. Eng., 1989, 113: 385
[22] Hughes D A.Microstructural evolution in a non-cell forming metal: Al Mg[J]. Acta Metal. Mater., 1993, 41(5): 1421
[23] Yoo J D, Park K.Microband-induced plasticity in a high Mn-Al-C light stee[J]. Mater. Sci. Eng., 2008, 496(1-2): 417
[24] Allain S, Chateau J P, Bouaziz O, et al.Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J].Mater. Sci. Eng., 2004, 387-389: 158
[25] Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Mater. Sci. Eng., 2008, 483-484: 184
[26] Allain S, Chateau J P, Bouaziz O. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J]. Mater. Sci. Eng., 2004, 387-389: 143
[27] Karaman I., Sehitoglu H., Gall K.et al.Deformation of single crystal Hadfield steel by twinning and slip[J]. Acta Mater., 2000, 48(6), 1345
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.