|
|
硅纳米带电弧等离子体的合成及其储锂电化学特性 |
余洁意,高嵩,董星龙( ) |
教育部三束材料改性重点实验室 大连理工大学材料科学与工程学院 大连 116024 |
|
Electrochemical Performance of Si Nanoribbons as Anode Material for Li-ion Battery Synthesized by Arc-discharge Plasma |
Jieyi YU,Song GAO,Xinglong DONG( ) |
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China |
引用本文:
余洁意,高嵩,董星龙. 硅纳米带电弧等离子体的合成及其储锂电化学特性[J]. 材料研究学报, 2017, 31(3): 161-167.
Jieyi YU,
Song GAO,
Xinglong DONG.
Electrochemical Performance of Si Nanoribbons as Anode Material for Li-ion Battery Synthesized by Arc-discharge Plasma[J]. Chinese Journal of Materials Research, 2017, 31(3): 161-167.
[1] | Edward H.Kottcamp, Volume 3, Alloy Phase Diagrams[M]. USA:The Materials Information Company, 1992 | [2] | Niu J., Zhang S.,Niu Y., et al.Silicon-based anode materials for lithium-ion batteries[J]. Prog. Chem., 2015, 27(9): 1275 | [3] | Rtu J. H., Kim J. W., Sung Y. E., et al. Failure modes of silicon powder negative electrode in lithium secondary batteries[J]. Electrochem. Solid ST., 2004, 7(10): A306 | [4] | Beaulieu L. Y., Eberman K. W., Turner R. L., et al. Colossal reversible volume changes in lithium alloys[J]. Electrochem.Solid ST., 2001, 4(9): A137 | [5] | Kim I. S., Blomgren G. E., Kumta P. N. Nanostructured Si?/TiB2 composite anodes for Li-?ion batteries[J]. Solid-State Lett., 2003, 6(8): A157 | [6] | Tedd A., Ferguson P. P., Barker J. G., et al. Comparison of mechanically milled and sputter deposited tin-?cobalt-?carbon alloys using small angle neutron scattering[J]. J. Electrochem. Soc., 2009, 156(12): A1034 | [7] | Yang J., Winter M., Besnhard J. O. Small particle size multiphase Li-?alloy anodes for lithium-?ion-?batteries[J]. Solid State Ionics, 1996, 90(s1-4): 281 | [8] | Yang J., Wachtler M., Winter M., Sub-?microcrystalline Sn and Sn-?SnSb powders as lithium storage materials for lithium-?ion batteries[J].Electrochem.Solid ST., 1999, 2(4): 161 | [9] | Chen I. W., Xue L. A., Development of superplastic structural ceramics[J]. J. Am. Ceram. Soc., 1990, 73(9): 2585 | [10] | Besnhard J. O., Yang J., Wachtler M., et al. Will advanced lithium-?alloy anodes have a chance in lithium-?ion batteries?[J]. J. Power Sources, 1997, 68(1): 87 | [11] | Kulish V. V., Malyi O. I., Ng M. F., et al. Enhanced Li adsorption and diffusion in silicon nanosheets based on first principles calculations[J].RSC Adv., 2013, 3(13): 4231 | [12] | Lu Z., Sim D., Zhou W., et al.Synthesis of ultrathin silicon nanosheets by using graphene oxide as template[J]. Chem. Mater., 2011, 23(24): 5293 | [13] | Shi W., Peng H., Wang N., et al.Free-?standing single crystal silicon nanoribbons[J]. J. Am. Chem. Soc., 2001, 123(44): 11095 | [14] | Wei D. P., Chen Q. Metal-?catalyzed CVD method to synthesize silicon nanobelts[J]. J. Phys. Chem. C, 2008, 112(39): 15129 | [15] | Okamoto H., Kumai Y., Sugiyama Y., et al.Silicon nanosheets and their self-?assembled regular stacking structure[J], J. Am. Chem. Soc., 2010, 132(8): 2710 | [16] | Zhang S. L., Raman spectroscopy and its application in nanostructures[M]. West Sussex: A John Wiley & Sons Ltd. Publication, 2012. | [17] | Faraci G., Gibilisco S., Pennisi A. R., et al. Quantum size effects in Raman spectra of Si nanocrystals[J].J. Appl. Phys., 2011, 109(7): 074311 | [18] | Faraci G., Gibilisco S., Russo P., et al.Modified Raman confinement model for Si nanocrystals[J]. Phys. Rev. B, 2006, 73(3): 033307 | [19] | Meier C., LuttjohannS., Kravets V. G., et al. Raman properties of silicon nanoparticles[J]. Physica E, 2006, 32(1-2): 155 | [20] | Nakano H., Nakano M., Nakaknishi K., et al.Preparation of alkyl-?modified silicon nanosheets by hydrosilylation of layered polysilane (Si6H6)[J]. J. Am. Chem. Soc., 2012, 134(12): 5452 | [21] | Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M]. New Jersey: World Scientific Hackensack, 2011 pp 450-451 | [22] | Yatsuta S., Kasukabe S., Uyeda R., Formation of ultrafine metal particles by gas evaporation technique. I. Aluminum in helium[J]. Japanese J. Appl. Phys., 1973, 12(11): 1675 | [23] | Kasukabe S.,Yatsuta S., Uyeda R.,Ultrafine metal particles formed by the gas-?evaporation technique. II. Crystal habits of magnesium, manganese, beryllium, and tellurium[J]. Japanese J. Appl. Phys., 1974, 13(11): 1714 | [24] | Saito Y., Yatsuya S., Mihama K., Uyeda R., Formation of ultrafine particles by gas-?evaporation technique. V. Silicon and germanium in argon[J].Japanese J. Appl. Phys., 1978, 17(2): 291 | [25] | Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M].New Jersey: World Scientific Hackensack, 2011, 21-23 | [26] | Yu J. Y., Gao J., Xue F. H., et al. Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-?discharge[J]. RSC Adv., 2015, 5(84): 68714 | [27] | Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M]. New Jersey: World Scientific Hackensack, 2011 pp 152-153 | [28] | Hartman P., Perdok W. G., Relations between structure and morphology of crystals[J]. Acta Crystallogr., 1955, 8: 49 | [29] | Ohno T., Yatsuya S., Uyeda R., Formation of ultrafine metal particles by gas-?evaporation technique. III. Aluminum in helium, argon, and xenon, and magnesium in mixtures of inactive gas and air[J]. Japanese J. Appl. Phys., 1976, 15(7): 1213 | [30] | Hayashi T., Ohno T., Yatsuya S., et al.Formation of ultrafine metal particles by gas-?evaporation technique. IV. Crystal habits of iron and fcc metals, aluminum, cobalt, nickel, palladium, silver, indium, gold and lead[J]. Japanese J. Appl. Phys., 1977, 16(5): 705 | [31] | Chou S., Wang J., Choucair M., et al.Enhanced reversible lithium storage in a nanosize silicon?/graphene composite[J]. Electrochem. Comm., 2010, 12(2): 303 | [32] | Magasinski A., Dixon P., Hertzberg B., et al.High-?performance lithium-?ion battery anodes using a hierarchical bottom-?up approach[J]. Nat. Mater., 2010, 9(4): 353 | [33] | Lu Z., Zhu J., Sim D., et al.In situ growth of Si nanowires on graphene sheets for Li-?ion storage[J]. Electrochim. Acta, 2012, 74: 176 | [34] | Wang J. T., Wang Y., Huang B., et al. Silicon supportedon stable Si-O-C skeletonin high-performance lithium-ion battery anode materials[J].Acta Phys.-Chim.Sin., 2014, 30(2):305. | [35] | Chen K., Bao Z. H., Liu D., et al. Confined synthesis and properties of porous silicon from silica aerogel templates by magnesiothermic reduction[J].Acta Phys.-Chim.Sin., 2011, 27(11):2719. | [36] | Zhang T., Gao J., Fu L., et al.Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries[J].J. Mater. Chem., 2007, 17(13):1321. | [37] | Kunai Y., Shirai S., Sudo E., et al.Characteristics and structural change of layered polysilane (Si6H6) anode for lithium ion batteries[J].J. Power Sources, 2011, 196(3):1503. | [38] | Guo Z. P., Zhao Z. W., Liu H. K., et al. Electrochemical lithiation and de-?lithiation of MWNT-?Sn?/SnNi nanocomposites[J].Carbon, 2005, 43(7):1392. | [39] | Peng Y., Chen Z., Wen J.,et al.Hierarchical manganese oxide?/carbon nanocomposites for supercapacitor electrodes[J].Nano Res., 2011, 4(2):216 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|