Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (1): 32-40    DOI: 10.11901/1005.3093.2016.037
  本期目录 | 过刊浏览 |
钼钨系高导热率热作模具钢高温性能
李爽1,2,3,吴晓春1,2,3(),黎欣欣1,2,3,何西娟1,2,3
1 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200072
2 上海市钢铁冶金新技术开发应用重点实验室 上海 200072
3 上海大学材料科学与工程学院 上海 200072
High Temperature Performance of a Mo-W Type Hot Work Die Steel of High Thermal Conductivity
Shuang LI1,2,3,Xiaochun WU1,2,3(),Xinxin LI1,2,3,Xijuan HE1,2,3
1 State Key Laboratory of Advanced Special Steel,Shanghai University,Shanghai 200072,China
2 Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University,Shanghai 200072,China
3 School of Materials Science and Engineering,Shanghai University,Shanghai 200072,China
引用本文:

李爽,吴晓春,黎欣欣,何西娟. 钼钨系高导热率热作模具钢高温性能[J]. 材料研究学报, 2017, 31(1): 32-40.
Shuang LI, Xiaochun WU, Xinxin LI, Xijuan HE. High Temperature Performance of a Mo-W Type Hot Work Die Steel of High Thermal Conductivity[J]. Chinese Journal of Materials Research, 2017, 31(1): 32-40.

全文: PDF(7136 KB)   HTML
摘要: 

研究了新型Mo-W系热作模具钢材料的抗回火性能、热稳定性、高温热导率和热疲劳性能。结果表明:与Cr-Mo-V系的H13热作模具钢相比,SDCM-S热作模具钢的一些高温性能有明显的优势。SDCM-S模具钢具有更高的抗回火软化性能和热稳定性能。SDCM-S模具钢的二次硬化峰值温度出现在580℃左右,比H13钢高约60℃。SDCM-S模具钢在620℃保温20 h后硬度高于38HRC,比H13钢高9HRC。SDCM-S模具钢在回火过程中析出尺寸稳定的Mo2C碳化物,是其具有高抗回火软化性能和良好的热稳定性能的原因。SDCM-S模具钢具有高热导率。SDCM-S模具钢的热导率在100℃是H13钢的1.86倍,在700℃是H13的1.26倍。低Si,低Mn,低Cr以及高Mo含量,是其高热导率的原因。SDCM-S模具钢具有比H13钢更高的抗热疲劳性能。其热疲劳总损伤因子明显小于H13钢,只有H13钢疲劳损伤因子的76.1%。SDCM-S热作模具钢具有良好的抗回火软化能力,高温热稳定性,高温热导率。这些因素的共同作用,使SDCM-S材料有比H13钢更高的热疲劳性能。

关键词 金属材料热作模具钢二次硬化热导率热稳定性能热疲劳性能    
Abstract

The temper resistance,thermal stability,high temperature thermal conductivity and thermal fatigue were investigated for a new Mo-W type hot work die steel SDCM-S. The results show that in comparison with the convensional H13 steel,the SDCM-S exhibits better temper resistance and thermal stability with a hardnessabove 38HRC after holding at 620℃ for 20 h,which higher than H13 by 8HRC,wihle its second hardening temperature appeared at 580℃ which higher than H13 by approximately 60℃. The high temper resistance and thermal resistance of SDCM-S may be ascribed to the well stability of the precipitates of Mo2C carbide during tempering. The thermal conductivity of SDCM-S is 1.86 times and 1.26 times higher than those of H13 at 100℃ and 700℃,respectively,which may be due to the low content of Si,Mn and Cr,as well as the high content of Mo of SDCM-S. The SDCM-S has better thermal fatigue resistance than H13 steel,i.e. the former one has a damage parameter of thermal fatigue of ca.76.1% of that of the later. In conclusion,SDCM-S has better performance in high temperature temper resistance,thermal stability,and thermal conductivity,which reasonably result in better thermal fatigue resistance of the steel SDCM-S.

Key wordsmetallic materials    hot work die steel    second hardening    thermal conductivity    temper resistance    thermal stability    thermal fatigue
收稿日期: 2016-01-06     
基金资助:十三五国家重点研发项目(2016YFB0300400)
C Mn Si Cr W Mo V
SDCM-S 0.35~0.40 0.10 0.04 0.12 1.5~2.0 4.5~5.0 0.02
H13 0.38 1.5 1.1 5.3 - 1.4 0.9
表1  SDCM-S和H13钢的化学成分(质量分数, %)
图1  热疲劳测试系统示意图和疲劳试样的尺寸
图2  两种模具钢的回火硬度曲线
图3  SDCM-S模具钢淬火和回火组织的SEM照片
图4  M2C型碳化物的明场和暗场及衍射花样
图5  M6C型碳化物的明场和衍射花样
图6  两种模具钢在620℃保温20 h后的硬度-温度曲线
图7  SDCM-S模具钢在620℃保温一定时间后组织的SEM照片
图8  SDCM-S 钢在620℃保温20 h后的TEM照片
图9  SDCM-S和H13模具钢的比热容、热扩散系数和热导率随温度的变化
图10  SDCM-S模具钢和H13钢多次循环后的裂纹形貌
图11  热疲劳损伤因子的计算结果
图12  两种模具钢循环3000次后的显微硬度分布梯度
[1] Cui K.Present condition and developing direction of die steels in china[J]. Materials for Mechanical Engineering, 2001, 25(1): 3
[1] (崔崑. 中国模具钢现状及发展[J]. 机械工程材料, 2001, 25(1): 3)
[2] Wu X C, ZUO P P, Development status and trend of hot working die steels at home and abroad[J]. Die & mould Industry, 2013, 39(10): 8
[2] (吴晓春, 左鹏鹏,国内外热作模具钢发展现状与趋势[J]. 模具工业, 2013, 39(10): 8)
[3] Fuchs K.Hot-work tool steels with improved properties for die-casting applications [A]. In 6th International Tooling Conference[C]. Karlstad University, 2002
[4] Kaschnitz E, Hofer P, Funk W.Thermophysical Properties of a Hot-Work Tool-Steel with High Thermal Conductivity[J]. Int. J. Thermophys. 2013, 34(1): 843
[5] Terada Y, Ohkubo K, Mohri T, Suzuki T.Effects of alloying additions on thermal conductivity of ferritic iron[J]. ISIJ international, 2002, 42(3): 322
[6] Xu W L, Li S, Yin X W.Studies on martensitic aging strengthening high thermal conductivity hot stamping die steel SKD1[J]. Chinese Journal of Materials Reaserch, 2013, 27(5): 532
[6] (徐伟力, 李爽, 尹学炜. 马氏体时效强化高热导率热冲压模具钢 SDK1 钢的性能[J]. 材料研究学报, 2013, 27(5): 532)
[7] Su T J, Wang F C, Li S K.Regression relationship established for thermal conductivity of steel as function of chemical composition at various temperatures. Ordnance Marerial Scienceand Engineering, 2004, 27(5): 14
[7] (苏铁健, 王福耻, 李树奎. 钢的热导率与化学成分和温度的关系[J]. 兵器材料科学与工程, 2004, 27(5): 14)
[8] Peet M J, Hasan H S, Bhadeshia H K D H, Prediction of thermal conductivity of steel[J]. Int J Heat Mass Transf, 2011, 54(1): 2607
[9] Zhu C Y, Shi N N, Zuo P P.Effect of Mn and W on thermal stability of 4Cr2Mo2W2V die steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 66
[9] (朱春燕, 石楠楠, 左鹏鹏. Mn 和 W 元素对 4Cr2Mo2W2V 模具钢热稳定性的影响[J].材料热处理学报, 2014, 35(2): 66)
[10] Min N, Shi N N, Shen Y L.Internal friction investigation on thermal-stability of martensitic hot work steel[J]., Transactions of Materials and Heat Treatment, 2012, 33(2): 96
[10] (闵娜, 石楠楠, 沈赟靓. 马氏体热作模具钢热稳定性的内耗研究[J].材料热处理学报, 2012, 33(2): 96)
[11] Klob?ar D, Kosec L, Kosec B.Thermo fatigue cracking of die casting dies[J]. Eng. Fai. Anal. 2012, 20(1): 43
[12] Mellouli D, Haddar N, K?ster A.Thermal fatigue failure of brass die-casting dies[J]. Eng. Fai. Anal, 2012, 20(1): 137
[13] Klob?ar D, Tu?ek J, Taljat B.Thermal fatigue of materials for die-casting tooling[J]. Mat, Sci, Eng, A, 2008, 472(1): 198
[14] Klob?ar D, Tu?ek J.Thermal stresses in aluminium alloy die casting dies[J]. Com, Mat, Sci, 2008, 43(1): 1147
[15] Berns H, Strength and toughness of hot working tool steels[J]. Tool Materials for Molds and Dies, Application and Performance, 1987, 45(1): 326
[16] SHEN Z, Li C, Su C H.Thermal diffusivity, thermal conductivity, and specific heat capacity measurements of molten tellurium[J]. J, Cry, Gro, 2003, 250(1): 272
[17] Min Y A.Study on the surface treatment process of H13 type hot work steel and its subsequent thernal fatigue and erosion behaviors [D]. Shanghai: Shanghai University, 2005
[17] (闵永安. 热作模具钢H13型表面处理及其热疲劳热熔损性能研究 [D]. 上海: 上海大学, 2005)
[18] Wu X C, Xu L P.Computer-aided eveluation for hot fatigue crack of modle steel[J]. Shanghai Steel, 2001, 23(6): 3
[18] (吴晓春,许珞萍. 模具钢热疲劳裂纹的计算机辅助评定[J]. 上海金属, 2001, 23(6): 3)
[19] Xie H J, Wu X C.Computer evaluation for the degree of thermal fatigue damage of hot working die steel[J]. Shanghai Steel, 2008, 30(3): 1
[19] (谢豪杰, 吴晓春. 热作模具钢热疲劳损伤程度的计算机评定[J]. 上海金属, 2008, 30(3): 1)
[20] Xu X, Wu X C.Study on damage parameter for thermal fatigue of hot work model steel[J]. Shanghai Steel, 2003, 25(2): 1)
[20] (徐晓, 吴晓春. 热作模具钢热疲劳损伤因子的研究[J]. 上海金属, 2003, 25(2): 1)
[21] Liu Q D, Liu W Q, Wang Z M.3D atom probe characterazation of alloy carbides in temperature martenite[J]. Acta. Metall. Sin, 2009, 45(1): 1281
[21] (刘庆冬, 刘文庆, 王泽民. 回火马氏体中合金碳化物的3D原子探针表征 I, 形核[J]. 金属学报, 2009, 45(1): 1281)
[22] Hu Z F, Wu X F, Wang C X.Coarsening kinetics of multi-component M2C precipitation in secondary hardening alloy steels[J]. Acta. Metall. Sin, 2003, 39(6): 585
[22] (胡正飞, 吴杏芳, 王春旭. 二次硬化合金钢中多组元强化相 M2C 碳化物的粗化动力学研究[J]. 金属学报, 2003, 39(6): 585)
[23] Chen Y, Chen Z Z, Dong Han.Adavance on research of tempering secondary hardening of alloy tool and die steel Fe-M-C quenched martensite[J]. Special Steel, 2004, 25(2): 37
[23] (陈鹰, 陈再枝, 董瀚. 合金工模具钢 Fe-MC 淬火马氏体回火的二次硬化研究进展[J]. 特殊钢, 2004, 25(2): 37)
[24] Wan R, Sun F, Zhang L.Effects of Mo on high-temperature strength of fire-resistant steel[J]. Mat. Des, 2012, 35(1): 335
[25] Li P H, Liu J X, Chen X.Study on microstructure of high performance fire resistance and weathering construction steel[J]. Iron and Steel, 2005, 40(6): 74
[25] (李平和, 刘继雄, 陈晓. 高性能耐火耐候建筑结构用钢的显微组织研究[J]. 钢铁, 2005, 40(6): 74)
[26] Miyata K, Sawaragi Y.Effect of Mo and W on the phase stability of precipitates in low Cr heat resistant steels[J]. ISIJ international, 2001, 41(3): 281
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.