Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (10): 737-744    DOI: 10.11901/1005.3093.2015.564
  研究论文 本期目录 | 过刊浏览 |
基于TiH2粉末短流程制备高性能钛的研究*
肖平安(),陈超,曹杰义,宋建勇,李志华
湖南大学材料科学与工程学院 长沙 410082
Compact Processing of High-Performance Titanium Based on Titanium Hydride Powder
Ping'an XIAO(),Chao CHEN,Jieyi CAO,Jianyong SONG,Zhihua LI
College of Materials Science and Engineering, HunanUniversity, Changsha 410082, China
引用本文:

肖平安,陈超,曹杰义,宋建勇,李志华. 基于TiH2粉末短流程制备高性能钛的研究*[J]. 材料研究学报, 2016, 30(10): 737-744.
Ping'an XIAO, Chao CHEN, Jieyi CAO, Jianyong SONG, Zhihua LI. Compact Processing of High-Performance Titanium Based on Titanium Hydride Powder[J]. Chinese Journal of Materials Research, 2016, 30(10): 737-744.

全文: PDF(0 KB)   HTML
摘要: 

以极细TiH2粉末为原料, 采用压制/真空烧结的方法制备细晶或者超细晶钛, 并通过HIP进一步提高钛的致密度以保障力学性能; 同时还研究了添加少量Y对钛制品的影响。通过拉伸试验评价了所得钛制品的力学行为, 并对显微组织和断口开展了系统分析。研究结果表明, 由极细TiH2粉末分解而来的钛粉具有优秀的烧结性能, 在600~900℃发生快速致密化, 当烧结温度≥1000℃时制品的相对致密度>97%。随着烧结温度的提高, 制品的晶粒逐步长大, 但是在1150℃下真空烧结2 h后平均晶粒度仍然小于10 mm。拉伸试验结果表明, 纯钛制品的抗拉强度在700~1032 MPa之间, 而含Y钛制品的抗拉强度>750 MPa, 且延伸率为8%~10%。TiH2分解对所获Ti粉起始晶粒度的遗传性影响和钛粉中固溶态H对晶粒合并长大的阻碍作用, 是利用极细TiH2粉末短流程制备细晶或者超细晶钛的机理。

关键词 金属材料氢化钛超细晶力学性能    
Abstract

Fully densified titanium with ultrafine-grains was fabricated by the sequence of pressing and vacuum sintering followed with a hot isostatic pressing (HIP) with superfine TiH2 powders as raw material. Then, the influence of the addition of 0.3 mass %Y on the fabrication process and properties of titanium was investigated. Simultaneously, the microstructure, mechanical properties and tensile fractured surface of titanium were systematically evaluated and analyzed. Results shows that, during heating in vacuum sintering process, the Ti powders decomposed from TiH2 powders were born with outstanding sintering activity. For example, the rapid densification took place at 600~900℃during the sintering process, samples with relative density higher than 97% could be obtained by 2-hour sintering above 1000℃. Noticed that the grain size of the sintered titanium increased when sintering temperature rose, however its average grain size could still remain less than 10 mm when it sintered below 1150℃. The tensile strength was in the range of 700~1032 MPa for the HIP treated Ti without yttrium, while, 750 MPa or higher along with an elongation among 8%~10% for those with addition of 0.3% Y. It is considered that the mechanism of making fine and ultrafine grain titanium from superfine TiH2 powders could come down to that: Firstly, decomposition of superfine TiH2 powders granted the newly produced Ti powders with ultrafine initial grain size by inheritance. Secondly, the solid dissolved H atoms, which released during decomposition, in the Ti powders could segregate at crystal defects and thus play a role as an impediment to grain growth during sintering process.

Key wordsmetallic materials    TiH2    titanium    ultrafine grain    mechanical property
收稿日期: 2015-10-09     
基金资助:* 国家自然科学基金资助51074070
图1  极细TiH2原料粉末的形貌和粒度分布
图2  拉伸试样尺寸
图3  真空烧结纯钛的密度随烧结温度的变化
图4  真空烧结纯钛的显微组织随烧结温度的衍变
图5  纯钛密度与烧结时间的关系
图6  1050℃真空烧结纯钛经HIP处理后的显微组织
图7  经不同温度真空烧结+HIP处理的纯钛制品的应力-应变曲线
Sample and preparation process Strength / MPa
Maximum tensile strength Maximum yield strength Average tensile strength Average yield strength
Yttrium-bearing pure Ti, 900℃vacuum sintering + HIP 860.03 827.69 757.10 -
Yttrium-bearing pure Ti,
1050℃ vacuum sintering + HIP
820.33 797.80 815.63 794.53
Pure Ti,1000℃ vacuum sintering + HIP 773. 02 - 723.74 -
Pure Ti,1050℃ vacuum sintering + HIP 942.52 - 865.59 -
Pure Ti,1100℃ vacuum sintering + HIP 893.13
-
892.75 -
Pure Ti,1150℃ vacuum sintering + HIP 884.33 - 861.08 -
Pure Ti,1200℃ vacuum sintering + HIP 1032.23 1026.61 976.21 857.91
表1  力学性能检测结果
图8  经不同温度真空烧结+HIP处理的纯钛拉伸试样断口SEM形貌
1 WANG Xingyun, ZHAO Xicheng, YANG Xirong, WANG Cheng, Study on mechanical properties of ultra-fine grained pure Ti processed by ECAP, Material & Heat Treatment, 38(10), 10(2009)
1 (王幸运, 赵西成, 杨西荣, 王成, ECAP制备超细晶钛的力学性能研究, 材料热处理技术, 38(10), 10(2009))
2 R. Z. Valiev, R. K Islamgaliev, I. V Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45(2), 103(2000)
3 Vladimir V Stolyarov, Y. Theodore Zhu, Igor V Alexandrov, Terry C Lowe, Ruslan Z Valiev, Influence of ECAP routes on the microstructure and properties of pure Ti, Materials Science and Engineering: A, 299(1), 59(2001)
4 Megumi Kawasaki, ByungminAhn, Terence G. Langdon, Microstructural evolution in a two-phase alloy processed by high-pressure torsion, ActaMaterialia, 58(3), 919(2010)
5 A. V Sergueeva, V. V Stolyarov, R. Z. Valiev, A. K Mukherjee, Superplastic behaviour of ultrafine-grained Ti-6Al-4V alloys, Materials Science and Engineering: A, 323(1), 318(2002)
6 Ying Chun Wang, Terence G, Langdon, Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion, Materials Science and Engineering A, 559, 861(2013)
7 Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding(ARB) process, ActaMatedalia, 47(2), 579(1999)
8 D. Kent, W. L. Xiao, G. Wang, Z. Yu, M. S. Dargusch, Thermal stability of an ultrafine grain β-Ti alloy, Materials Science and Engineering A, 556(30), 582(2012)
9 S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva, G. Salishchev, Strength and ductility-related properties of ultra fine grained two-phase titanium alloy produced by warm multiaxial forging, Materials Science and Engineering A, 536(28), 190(2012)
10 G. A Salishchev, R. M Galeyev, O. R Valiakhmetov, R. V Safiullin, R. Y Lutfullin, O. N Senkov, F. H Froes, O. A Kaibyshev, Development of Ti-6A1-4V sheet with low temperature super-plastic properties, Journal of Materials Processing Technology, 116(2-3), 265(2001)
11 M. Richert, H. J. Mcqueen, J. Richert, Microbandformation in cyclic extrusion compression of aluminum, Canadian Metallurgical Quarterly, 37(5), 449(1998)
12 S. V. Zherebstsov, G. A. Salishchev, R. M. Galeyev, O. R. Valiakhmetov, S.Yu. Mironov, S.L. Semiatin, Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing, Scripta Materialia, 51(12), 1147(2004)
13 R. Kuziak, W. zalecki, S. Weglarczyk, M. Pietrzyk, New possibilities of achieving ultrafine grained microstructure in metals and alloy employing max strain technology, 101-102, 43(2005)
14 A. Y. Vinogradov, V. V. Stolyarov, S. Hashimoto, R. Z. Valiev, Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation, Materials Science and Engineering A, 318(1-2), 163(2001)
15 J. May, M. Dinkel, D. Amberger, H. W. H?ppel, M. G?ken, Mechanical properties, dislocation density and grain structure of ultrafine-grained aluminum and aluminum-magnesium alloys, Metallurgical and Materials Transactions A, 38(9), 1941(2007)
16 T. Niendorf, D. Canadinc, H. J. Maier, I. Karaman, S. G. Sutter, On the fatigue behavior of ultrafine-grained interstitial-free steel, International Journal of Materials Research, 97(10), 1328(2006)
17 T. Niendorf, D. Canadinc, H. J. Maier, I. karaman, G. G. Yapici, Microstructure-mechanical property relationships in ultrafine-grained NbZr, Acta Materialia, 55(19), 6596(2007)
18 A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Mican, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yangida, Severe plastic deformation (SPD) processes for metals, Manufacturing Technology, 57(2), 716(2008)
19 DAI Kunliang, Dehydrogening character, compactibility and sintering performance of TiH2 powder, Master thesis, Hunan University (2009)
19 (戴坤良, TiH2粉体脱氢特性和压制与烧结行为研究, 硕士学位论文, 湖南大学(2009))
20 ZHANG Xiaohu, Study of stirring ball milling of TiH2/SiC mixed powders and their sintering behavior, Master thesis, Hunan University (2012)
20 (张小虎, TiH2/SiC复合粉末的搅拌球磨及其烧结行为研究, 硕士学位论文, 湖南大学(2012))
21 LEI Bao, Investigation of milling of TiH2 powders and its influence on, microstructure evolution of sintered Ti from the milled powders, Master thesis, Hunan University, Master thesis, Hunan University (2012)
21 (雷豹, TiH2粉末的行星球磨及其对烧结钛合金显微组织演变的影响研究, 硕士学位论文, 湖南大学(2012))
22 CAO Jieyi, TiH2 superfine jet mill use fine grain titanium powdermanufacturing, Master thesis, Hunan University (2014)
22 (曹杰义, 使用超细TiH2粉末制备超细晶钛的技术研究, 硕士学位论文, 湖南大学(2014))
23 Derek Hull, LI Xiaogang, DONG Chaofang, DU Cuiwei, GAO Jin, LU Lin, Fractography(Beijing, Science Press, 2009)p.90
23 (德里克·赫尔, 李晓刚, 董超芳, 杜翠薇, 高瑾, 卢琳, 断口形貌学(北京, 科学出版社, 2009)p.90)
24 CUI Yuexian, WANG Changli, Analysis of Metal Fracture Surface (Harbin, Harbin Institute of Technology Press, 1998)p.50
24 (崔约贤, 王长利, 金属断口分析(哈尔滨, 哈尔滨工业大学出版社, 1998)p.50)
25 CAO Jieyi, XIAO Ping'an, DAI Kunliang, LI Chenkun, ZHANG Xia, Thermal dehydrogenation behavior of TiH2 and its dynamics calculation, The Chinese Journal of Nonferrous Metals, 24(3), 733(2014)
25 (曹杰义, 肖平安, 戴坤良, 李晨坤, 张霞, TiH2脱氢规律和动力学计算, 中国有色金属学报, 24(3), 733(2014))
26 XIE Dan, QI Weihong, WANG Mingpu, Size and shape dependent melting-thermodynamic properties of metallic nanoparticles, Acta Metallurgica Sinica, 40(10), 1041(2014)
26 (谢丹, 齐卫宏, 汪明朴, 金属纳米微粒熔化热力学性能的尺寸形状效应, 金属学报, 40(10), 1041(2014))
27 FENG Daili, Phase change thermal properties of metallic nano units and their composites, PhD thesis, University of Science and Technology Beijing(2014)
27 (冯黛丽, 金属纳米基元及基复合体的相变热特性, 博士学位论文, 北京科技大学(2014))
28 ZHANG Zhu, WANG Qunjiao, MO Wei, Titanium Metallography and Heat Treatment (Beijing, Metallurgical Industry Press, 2009)
28 (张翥, 王群骄, 莫畏, 钛的金属学与热处理(北京, 冶金工业出版社, 2009))
29 YUAN Baoguo, Microstructure and Property of Hydrogenated Titanium Alloy(Beijing, Metallurgical Industry Press, 2015)
29 (袁宝国, 置氢钛合金组织与性能(北京, 冶金工业出版社, 2015))
30 Elias R J, Corso H L, Gervasoni J L, Fundamental aspects of the Ti-H system: theoretical and experimental behavior, Int. J. Hydrogen Energy, 27(1), 91(2002)
31 LIU Suhong, Investigation of TiH2 powder injection molding, Master thesis, Hunan University(2009)
31 (刘素红, TiH2粉末注射成形技术研究, 硕士学位论文, 湖南大学(2009))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.