Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (4): 307-313    DOI: 10.11901/1005.3093.2015.511
  本期目录 | 过刊浏览 |
交联聚两性离子液基材料增强TiO2光催化性能的研究
张娈娈1, 高和军1,2(), 廖运文1,2()
1. 化学合成与污染控制四川省重点实验室 南充 637009
2. 西华师范大学应用化学研究所 南充 637009
Enhancement of Photocatalytic Activity of TiO2 with Cross-linked Poly (amphoteric ionic liquid)
ZHANG Luanluan1,2, GAO Hejun1,2,**(), LIAO Yunwen1,2,**()
1. Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637009, China
2. Institute of Applied Chemistry, China West Normal University, Nanchong 637009, China
引用本文:

张娈娈, 高和军, 廖运文. 交联聚两性离子液基材料增强TiO2光催化性能的研究[J]. 材料研究学报, 2016, 30(4): 307-313.
Luanluan ZHANG, Hejun GAO, Yunwen LIAO. Enhancement of Photocatalytic Activity of TiO2 with Cross-linked Poly (amphoteric ionic liquid)[J]. Chinese Journal of Materials Research, 2016, 30(4): 307-313.

全文: PDF(3343 KB)   HTML
摘要: 

在低温下, 通过溶胶-凝胶法(Sol-Gel)法成功将TiO2负载到聚两性离子液体基材料(CPAIL)表面, 获得了高性能催化剂CPAIL@TiO2。通过XRD, SEM, EDS, TEM, FT-IR, TGA, XPS和N2吸脱附(BET)等方法对其结构进行了表征。结果表明, CPAIL@TiO2为单一纯相锐钛矿结构, 包含有40%的TiO2, 且其能够均匀分布在CPAIL@TiO2中, 形成C—O—Ti键。在4次循环后, 对甲基橙(MO)和亚甲基蓝(MB)光催化降解程度分别可高达97%和55%, 表明CPAIL@TiO2具有高效的催化性能和循环性能。

关键词 复合材料离子液体二氧化钛溶胶凝胶法聚合物光催化    
Abstract

A novel composite material CPAIL@TiO2, which exhibits high photocatalytic activity, was prepared by a sol-gel method using raw materials of tetrabutoxytitanium and cross-linked poly(amphoteric ionic liquid) (CPAIL). The prepared CPAIL@TiO2 was characterized by XRD, SEM, EDS, TEM, FT-IR, TGA and XPS. The results show that the mesoporous nanospheres of composite material CPAIL@TiO2 contains ca 40% TiO2, which is characterized as anatase. There existed chemical bands of C–O–Ti in the composite material. The CPAIL@TiO2 shows a good photocatalytic activity and cycle performance. The photocatalytic degradation efficiencies of the CPAIL@TiO2 could reach 97% and 55% of those of pure TiO2 for solutions of methyl orange (MO) and methylene blue (MB) respectively. In general, the above superiority of the composite material CPAIL@TiO2 demonstrates better prospects for applications in the field of environmental protection.

Key wordscomposites    ionic liquid    TiO2    sol-gel    polymer    photocatalysis
收稿日期: 2015-09-14     
基金资助:四川省应用基础项目基金2015JY0042,四川省教育厅重点项目基金15ZA0147及西华师范大学基础项目基金14E015资助
作者简介: 本文联系人: 高和军; 廖运文, 教授
图1  CPAIL@TiO2的XRD谱
图2  TiO2和CPAIL@TiO2的SEM像
图3  CPAIL@TiO2的TEM像
图4  CPAIL@TiO2 和TiO2的热重分析曲线
图5  CPAIL@TiO2的XPS谱
图6  光催化剂的FT-IR谱
图7  CPAIL@TiO2的N2吸脱附曲线和BJH曲线
图8  MB随时间光降解过程
图9  MO随时间的光降解过程
图10  纯相TiO2与CPAIL@TiO2的固体紫外漫反射光谱
图11  MO和MB的光催化循环性能
1 DAI Shijun, DU Lin, HU Changwei, ZHANG Xinshen, Investigation on electrocatalytic degradation of methyl orange on Ti/TiO2 anode doped with Ru-Pd, Acta Chim. Sinica, 66, 14(2008)
1 (代仕均, 杜琳, 胡常伟, 张新申, 钌-钯掺杂 Ti/TiO2阳极电催化降解甲基橙研究, 化学学报, 66, 14(2008))
2 WANG Tianhui, LI Yuexiang, PENG Shaoqin, LV Gongxuan, LI Shuben, Activity of rare earth doped TiO2 deposited with Pt for photocatalytic hydrogen generation, Acta Chim. Sinica, 63, 9(2005)
2 (王添辉, 李越湘, 彭绍琴, 吕功煊, 李树本, 铂修饰的稀土掺杂 TiO2 的光催化制氢活性, 化学学报, 63, 9(2005))
3 MST Goncalves, EMS Pinto, P. Nkeonye, AMF Oliveira-Campos, Degradation of C. I. Reactive Orange 4 and its simulated dyebath wastewater by heterogeneous photocatalysis, Dyes and Pigments, 64, 2(2004)
4 ZOU Zhigang, ZHAO Jincai, C, FU Xianzhi, ZHANG Pengyi CHEN Jun, ZHU Hongming, YE Jinhua, Functional Materials Information, 2, 6(2005)
4 (邹志刚, 赵进才, 付贤智, 张彭义, 陈军, 朱洪明, 叶金花, 光催化材料在太阳能转换与环境净化方面的研究现状和发展趋势, 功能材料信息, 2, 6(2005))
5 Y. Yang, G. Z. Wang, Q. Deng, H. L. Ng, Dickon, H. J. Zhao, Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange, ACS Applied Materials & Interfaces, 6, 4(2014)
6 S. B. Wang, L. Pan, J. J. Song, W. B. Mi, J. J. Zou, J. J.; L. Wang, X. W. Zhang,Titanium-​defected undoped anatase TiO2 with p-​type conductivity, room-​temperature fFerromagnetism, and remarkable photocatalytic performance, Journal of the American Chemical Society, 137, 8(2015)
7 E. Lira, S. Wendt, P. Huo, J. O. Hansen, R. Streber, S. Porsgaard, Y. Wei, R. Bechstein, E. Laegsgaard, F. Besenbacher, The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces, Journal of the American Chemical Society, 133, 17(2011)
doi: 10.1021/ja1085723
8 F. T. Li, Y. Zhao, Y. J. Hao, X. J. Wang, R. H. Liu, D. S. Zhao, D. M. Chen, N-​doped P25 TiO2-​amorphous Al2O3 composites: One-step solution combustion preparation and enhanced visible-​light photocatalytic activity, Journal of Hazardous Materials, 239-240, 118(2012)
9 C. Cantau, T. Pigot, J. C. Dupin, S. Lacombe, N-​doped TiO2 by low temperature synthesis: Stability, photo-​reactivity and singlet oxygen formation in the visible range, Journal of Photochemistry and Photobiology, A: Chemistry, 216(s2-3), 201(2010)
10 F. Chen, W. Zou, W. Qu, J. Zhang, Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process, Catalysis Communications, 10, 11(2009)
doi: 10.1016/j.catcom.2008.07.022
11 Y. L. Kuo, T. L. Su, F. C. Kung, T. Wu, Study of parameter setting and characterization of visible-​light driven nitrogen-​modified commercial titanium oxide photocatalysts, Journal of Hazardous Materials, 190(1-3), 938(2011)
doi: 10.1016/j.jhazmat.2011.04.031
12 M. Wu, J. Jin, J. Liu, Z.Deng, Y. Li, O. Depairs, B. Su, LHigh photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption, Journal of Materials Chemistry A: Materials for Energy and Sustainability, 1, 48(2013)
13 L. Ren, Y. Li, J. Hou, X. Zhao, C. Pan, Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores, ACS Applied Materials & Interfaces, 6, 3(2014)
14 S. M. Oh, J. Y. Hwang, C. S. Yoon, J. Lu, K. Amine, L. Illias Belharouak, Y. K. Sun, High electrochemical performances of microsphere C-​TiO2 anode for sodium-​ion battery, ACS Applied Materials & Interfaces, 6, 14(2014)
15 T. G. Deepak, D. Subash, G. S. Anjusree, K. R. Pai, Narendra; Nair, Shantikumar V.; Nair, A. Sreekumaran, Photovoltaic property of anatase TiO2 3-​D mesoflowers, ACS Sustainable Chemistry & Engineering, 2, 12(2014)
16 H. B. Jiang, Q. Cuan, C. Z. Wen, J. Xing, D. Wu, X. Q. Gong, C. Z. Li, H. G. Yang, Anatase TiO2 crystals with exposed high-index facets, Angewandte Chemie, International Edition, 50, 16(2011)
17 H. W. Zhu, Z. X. Chen, Y. Sheng, T. T. L.Thi, Flaky polyacrylic acid​/aluminium composite particles prepared using in-​situ polymerization, Dyes and Pigments, 86, 2(2010)
doi: 10.1016/j.dyepig.2009.12.012
18 H. K. Jeong, Y. P. Lee, J. W. E Lahaye, M. H. Park, K. H. An, L. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, Y. H. Lee, Evidence of graphitic AB stacking order of graphite oxides, Journal of the American Chemical Society, 130, 4(2008)
doi: 10.1021/ja076473o pmid: 18179214
19 Q. Zhang, Y. Q. He, X. G. Chen, D. H. Hu, L. J. Li, T. Yin, L. L. Ji, Structure and photocatalytic properties of TiO2-​graphene oxide intercalated composite, Chinese Science Bulletin, 56, 3(2011)
20 N. J. Bell, Y. H. Ng, A. Du, H. Coster, S. C. Smith, R. J. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-​reduced graphene oxide composite, Journal of Physical Chemistry C, 115, 13(2011)
21 C. C. Su, K. F. Lin, Y. H. Lin, B. H. You, Preparation and characterization of high-​surface-​area titanium dioxide by sol-​gel process, Journal of Porous Materials, 13, 3/4(2006)
22 J. L. Zhang, S. Q. Cao, S. B. Xu, H. G. Yang, L. Yang, Y. Q. Song, L. Jiang, Y. Dan, Study on stability of poly(3-​hexylthiophene)​/titanium dioxide composites as a visible light photocatalyst, Applied Surface Science, 349(2015)
doi: 10.1016/j.apsusc.2015.04.192
23 B. K. Nath, J. N. Ganguli, Hydrogenation with ruthenium nano particles supported on MCM-48, Asian Journal of Science and Technology, 5, 3(2014)
24 Q. Cheng, J. H. Sui, W. Cai, Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions, Nanoscale, 4, 3(2012)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.