Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (2): 115-122    DOI: 10.11901/1005.3093.2015.071
  本期目录 | 过刊浏览 |
纺丝液参数对静电纺丝制备镁铝尖晶石纤维的影响*
崔燚1, 魏恒勇1,2(), 王合洋1, 魏颖娜1, 林健2, 卜景龙1, 王鹏1
1. 华北理工大学材料科学与工程学院 河北省无机非金属材料重点实验室 唐山 063009
2. 同济大学材料科学与工程学院 上海 201804
Effect of Spinning Solution Parameters on Synthesis of Magnesium Aluminate Spinel Fibers via Electrospinning
CUI Yi1, WEI Hengyong1,2,**, WANG Heyang1(), WEI Yingna1, LIN Jian2, BU Jinglong1, WANG Peng1
1. College of Material Science and Engineering, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Tangshan 063009, China
2. College of Material Science and Engineering, Tongji University, Shanghai 201804, China
引用本文:

崔燚, 魏恒勇, 王合洋, 魏颖娜, 林健, 卜景龙, 王鹏. 纺丝液参数对静电纺丝制备镁铝尖晶石纤维的影响*[J]. 材料研究学报, 2016, 30(2): 115-122.
Yi CUI, Hengyong WEI, Heyang WANG, Yingna WEI, Jian LIN, Jinglong BU, Peng WANG. Effect of Spinning Solution Parameters on Synthesis of Magnesium Aluminate Spinel Fibers via Electrospinning[J]. Chinese Journal of Materials Research, 2016, 30(2): 115-122.

全文: PDF(4879 KB)   HTML
摘要: 

以无水氯化镁和无水氯化铝为原料, 聚乙烯吡咯烷酮(PVP)为助纺剂, 无水乙醇和N, N-二甲基甲酰胺(DMF)为溶剂, 采用非水解溶胶-凝胶法制备纺丝前驱体溶液, 利用静电纺丝技术获得镁铝尖晶石凝胶/PVP前驱体纤维, 经900℃煅烧合成出镁铝尖晶石纤维.借助XRD, FTIR, SEM和TEM研究了凝胶化温度,凝胶用量和PVP用量等纺丝液参数对镁铝尖晶石纤维相组成及结构的影响.结果表明, 直接添加混合溶液时, 虽能合成出物相为镁铝尖晶石的纤维, 但纤维交联严重, 还出现了较多念珠状颗粒; 当凝胶化温度为120℃时, 纤维则出现了明显的断裂; 纤维直径随凝胶用量和PVP用量的增加而增大.当凝胶化温度为100℃,凝胶用量为0.068 mol/L,PVP用量为0.045 g/mL时, 纤维为镁铝尖晶石相, 表面光滑,连续, 直径均匀且细小, 平均直径为121 nm, 经1600℃煅烧后仍保持良好的纤维形貌.

关键词 无机非金属材料静电纺丝镁铝尖晶石纤维非水解溶胶-凝胶    
Abstract

A solution for electro-spinning of fibers was prepared via non-hydrolytic sol-gel method with ethanol and dimethyl formamide (DMF) as solvent, MgCl2 and AlCl3 as raw material and polyvinylpyrrolidone (PVP) as additive. With the above solution, precursor fibers of magnesia-alumina spinel were prepared by electrospinning technology, which then were calcined at 900℃ to finally produce fibers of magnesia-alumina spinel. The effect of gelation temperature, the content of gel and PVP on the phase composition and microstructure of magnesia-alumina spinel fibers was studied by XRD, FTIR, SEM and TEM. The result shows that magnesia-alumina spinel fibers could be produced with the fiber precursor prepared with the fresh solution which was not subjected to sol-gel treatment, but such fibers were cross-linked seriously and on which there existed significant amount of moniliform particles; For those made of the fiber precursor prepared with the solution after gelation at 120℃, such fibers were apt to fracture and the diameter of which increased with the increasing dosage of gel and PVP; For those made of the fiber precursor prepared with the solution after gelation at 100℃ with a dosage of 0.068 mol/L gel and 0.045 g/mL PVP, the fibers were smooth, continuous and homogeneous with an average diameter 121 nm, and furthermore, these fibers still showed good a morphology even after calcined at 1600℃.

Key wordsinorganic non-metallic Materials    electro-spinning    magnesium aluminate spinel    fibers    non-hydrolysis sol-gel
收稿日期: 2015-02-02     
ZTFLH:  TQ343+.41  
基金资助:* 国家自然科学基金51302064和华北理工大学青年基金Z201413资助项目
作者简介: 通讯作者:魏恒勇
Technological parameter MgCl2
/g
AlCl3
/g
C2H5OH
/mL
CH2Cl2
/mL
PVP
/g
EtOH
/mL
Gel temperature
/℃
Gel temperature Added directly 0.07 0.20 0.25 7.5 0.5 8 Added directly
100 0.07 0.20 0.25 7.5 0.5 8 100
120 0.07 0.20 0.25 7.5 0.5 8 120
Content of gel 0.068 mol/L 0.07 0.20 0.25 7.5 0.5 8 100
0.100 mol/L 0.11 0.30 0.37 11.3 0.5 8 100
0.136 mol/L 0.14 0.40 0.50 15 0.5 8 100
Dosage of PVP 0.027 g/mL 0.07 0.20 0.25 7.5 0.3 8 100
0.045 g/mL 0.07 0.20 0.25 7.5 0.5 8 100
0.063 g/mL 0.07 0.20 0.25 7.5 0.7 8 100
表1  实验方案
图1  不同凝胶化温度时所制备纤维的XRD谱
图2  不同凝胶化温度纤维样品的SEM像
图3  不同凝胶化温度纤维样品的纤维直径分布图
图4  不同凝胶化温度下镁铝尖晶石凝胶的FTIR谱
图5  镁铝尖晶石凝胶用量不同时纤维的XRD谱
图6  不同凝胶用量时镁铝尖晶石纤维的SEM像
图7  不同凝胶用量时镁铝尖晶石纤维的纤维直径分布图
图8  不同PVP用量所得镁铝尖晶石纤维的XRED谱
图9  不同PVP用量所纺纤维的SEM像
图10  不同PVP用量所纺纤维的纤维直径分布图
图11  镁铝尖晶石纤维经900℃和1600℃煅烧后的XRD谱
图12  镁铝尖晶石纤维经900℃和1600℃煅烧后的SEM像
图13  镁铝尖晶石纤维经900℃和1600℃煅烧后的TEM像
1 I. Ganesh, A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications, International Materials Reviews, 58(2), 63(2013)
2 YANG Daoyuan, ZHANG Rui, MIAO Jinqi, HU Jinming, LU Hongxia, XU Hongliang,Transparent magnesium aluminum spinel fibre and manufacture method thereof,China Patent, 2006101070740(2007)
2 (杨道媛, 张锐, 苗晋琦, 胡金明, 卢红霞, 许红亮, 透明镁铝尖晶石纤维及其制备方法, 中国专利, 2006101070740(2007))
3 DUAN Hongjuan, ZHU Hongxi, DENG Chengji, YUAN Wenjie, Influence of temperature and atmosphere on the synthesis of MgAl2O4 spinel fiber, Journal of Synthetic Crystals, 11, 2380(2013)
3 (段红娟, 祝洪喜, 邓承继, 员文杰, 温度和气氛对合成镁铝尖晶石纤维的影响, 人工晶体学报, 11, 2380(2013))
4 J. M. Boulton, K. Jones, H. G. Emblen, The preparation of spinel fibre by a sol-gel route, Journal of Materials Science Letters, 9(8), 914(1990)
5 Y. LIU, R. M. Laine, Spinel fibers from carboxylate precursor, Journal of the European Ceramic Society, 19(11), 1949(1999)
6 YANG Daoyuan, JIA Xiaolin, GUO Xinrong, ZHANG Haijun, SUN Jialin, ZHONG Xiangcong, Preliminary study on the mechanism of MgAl2O4 fibres growth, Materials Review, 18(z1), 311(2004)
6 (杨道媛, 贾晓林, 郭新荣, 张海军, 孙加林, 钟香崇, 六方柱状MgAl2O4纤维的合成机理初探, 材料导报, 18(z1), 311(2004))
7 DING Bin, YU Jianyong, Electrospinning and Nanofibers (Beijing, China Textile & Apparel Press, 2011) p.95
7 (丁彬, 俞建勇, 静电纺丝与纳米纤维(北京, 中国纺织出版社, 2011)p.95)
8 W. M. Kang, A new method for preparing alumina nanofibers by electrospinning technology, Textile Research Journal, 81(2), 148(2011)
9 ZONG Xue, CAI Yibing, SUN Guiyan, ZHAO Yong, HUANG Fenglin, SONG Lei, HU Yuan, FONG Hao, WEI Qufu, Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval, Solar Energy Materials and Solar Cells, 132, 183(2015)
10 M. A. Z.Marjan, K. R. Mansoor, E. Touraj, Effect of viscosity of polyvinyl alcohol solution on morphology of the electrospun mullite nanofibres, Ceramics International, 40(4), 5461(2014)
11 DONG Guoping, XIAO Xiudi, PENG Mingying, MA Zhijun, YE Shi, CHEN Dingdan, QIN Huijun, DENG Guangliang, LIANG Qining, QIU Jianrong, Synthesis and optical properties of chromium-doped spinel hollow nanofibers by single-nozzle electrospinning, RSC Advances, 2, 2773(2012)
12 WEI Hengyong, WANG Heyang, WEI Yingna, YANG Jinping, YU Yun, BU Jinglong, Comparative research on the preparation of MgAl2O4 powders by non-hydrolytic and hydrolytic sol-gel method, Journal of Synthetic Crystals, 42(7), 1384(2013)
12 (魏恒勇, 王合洋, 魏颖娜, 杨金萍, 于云, 卜景龙, 非水解和水解溶胶-凝胶法合成MgAl2O4粉体对比研究, 人工晶体学报, 42(7), 1384(2013))
13 A. Aboulaich, O. Lorret, B. Boury, P. H. Mutin, Surfactant-free organo-soluble silica-titania and silica nanoparticles, Chemistry of Materials, 21(13), 2577(2009)
14 C. Mit-uppatham, M Nithitanakul, P Supaphol, Ultratine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter, Macromolecular Chemistry and Physics, 205(17), 2327(2004)
15 PEI Lizhai, YIN Wanyun, WANG Jifen, CHEN Jun, FAN Chuanguang, ZHANG Qianfeng, Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process, Materials Research, 13(3), 339(2010)
16 A. K. Adak, S. K. Saha, P. Pramanik, Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique, Journal of Materials Science Letters, 16(3), 234(1997)
17 LIN Jinyou, DING Bin, YU Jianyong, Direct fabrication of highly nanoporous polystyrene fibers via electrospinning, ACS Applied Materials and Interfaces, 2(2), 521(2010)
18 ZONG Xinhua, K Kima, FANG Dufei, RAN Shaofeng, B. S. Hsiao, B Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, 43(16), 4403(2002)
19 LIU Mingquan, SHEN Xiangqian, MENG Xianfeng, SONG Fuzhan, XIANG Jun, Fabrication and magnetic property of M-type strontium ferrite nanofibers by electrospinning, Journal of Inorganic Material, 01, 68(2010)
19 (刘明权, 沈湘黔, 孟献丰, 宋福展, 向军, M型锶铁氧体纳米纤维静电纺丝和磁性能, 无机材料学报, 01, 68(2010))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 戚云超, 方国东, 周振功, 梁军. 不同针刺工艺的针刺复合材料面内拉伸强度分析[J]. 材料研究学报, 2023, 37(1): 21-28.
[15] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.