Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (3): 199-208    DOI: 10.11901/1005.3093.2015.374
  本期目录 | 过刊浏览 |
添加CNTs,APP和ABS对尼龙6阻燃性能改善的协同效应研究*
杨典, 陆昶(), 唐坦, 张春晖, 马晴岩, 黄新辉, 张玉清
河南科技大学化工与制药学院 高分子科学与纳米技术重点实验室 洛阳 471003
Synergistic Effect of Introducing Ammonium Polyphosphate, Carbon Nanotubes and Acrylonitrile-butadiene-styrene to Nylon 6 for Improving Flame Retardancy
YANG Dian, LU Chang**(), TANG Tan, ZHANG Chunhui, MA Qingyan, HUANG Xinhui, ZHANG Yuqing
(Key Lab of Polymer Science and Nanotechnology, Chemical Engineering & Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, China)
引用本文:

杨典, 陆昶, 唐坦, 张春晖, 马晴岩, 黄新辉, 张玉清. 添加CNTs,APP和ABS对尼龙6阻燃性能改善的协同效应研究*[J]. 材料研究学报, 2016, 30(3): 199-208.
Dian YANG, Chang LU, Tan TANG, Chunhui ZHANG, Qingyan MA, Xinhui HUANG, Yuqing ZHANG. Synergistic Effect of Introducing Ammonium Polyphosphate, Carbon Nanotubes and Acrylonitrile-butadiene-styrene to Nylon 6 for Improving Flame Retardancy[J]. Chinese Journal of Materials Research, 2016, 30(3): 199-208.

全文: PDF(4680 KB)   HTML
摘要: 

采用碳纳米管(CNTs)和聚磷酸铵(APP)阻燃尼龙6(PA6).结果表明, 在1%CNTs(质量分数, 下同)及20%APP添加量下, PA6具有优异的阻燃性能.在PA6/APP/CNTs共混物中加入易燃的丙烯腈-丁二烯-苯乙烯共聚物(ABS), 在0.25%CNTs添加量下, 其阻燃性能与添加1%CNTs的PA6/APP/CNTs复合材料相近.TEM观察表明, CNTs在PA6/ABS/APP共混物中仅分布在PA6相中.流变性能测试表明, CNTs在共混物PA6/ABS/APP中的选择性分布会使形成网络结构所需的CNTs含量从1%降低到0.25%.炭层的形态表明网络结构有利于形成连续且较为致密的炭层, 使得1% CNTs填充PA6/APP共混物及0.25% CNTs填充PA6/ABS/APP共混物具有良好的阻燃性能.当PA6/ABS/APP共混物中的CNTs含量达到1%时, CNTs形成过于致密的网络结构, 限制了炭层的膨胀, 从而削弱其阻燃性能.

关键词 复合材料阻燃性能尼龙6聚磷酸铵碳纳米管网络结构    
Abstract

Carbon nanotubes (CNTs) and ammonium polyphosphate (APP) were applied to improve the flame retardancy of nylon6 (PA6). The results showed that PA6/APP/CNTs exhibited excellent flame retardancy with 1% CNTs and 20% APP (in mass fraction). While for a PA6/APP/CNTs blended with the flammable acrylonitrile-butadiene-styrene (ABS) it needed to add only 0.25% CNTs to meet the flame retardancy equal to that of the above mentioned PA6/APP/CNTs with 1% CNTs. TEM observation showed that CNTs were exclusively dispersed in the PA6 phase of PA6/ABS/APP. Rheological tests showed that the selective dispersion of CNTs facilitated the formation of the network structure of CNTs, thus the needed CNTs content could be lowered from 1% to 0.25% to meet the required flame retardancy. The morphology observation of the residue char revealed that the network structure was benefitial to the formation of compact residue char thus enhanced the flame retardancy for the 1% CNTs filled PA6/APP or 0.25% CNTs filled PA6/ABS/APP, respectively. When the CNTs content in PA6/ABS/APP was 1%, the formed network structure was so dense that the swell of the char layer was inhibited, thereby resulting in poor flame retardancy.

Key wordscomposites    flame retardancy    nylon 6    ammonium polyphosphate    carbon nanotubes    network
收稿日期: 2015-07-03     
ZTFLH:  TQ323.6  
基金资助:* 国家自然科学基金51003024和河南科技大学SRTP资助项目
作者简介: 陆昶, 教授
Sample code PA6 /% ABS /% APP /% CNTs /%
PA6 100
PA6/APP 80 0 20 0
PA6/APP/CNTs (0.125%) 80 0 20 0.125
PA6/APP/CNTs (0.25%) 80 0 20 0.25
PA6/APP/CNTs (0.5%) 80 0 20 0. 5
PA6/APP/CNTs (1%) 80 0 20 1
PA6/ABS/APP 56 24 20 0
PA6/ABS/APP/CNTs (0.125%) 56 24 20 0.125
PA6/ABS/APP/CNTs (0.25%) 24 56 20 0.25
PA6/ABS/APP/CNTs (0.5%) 56 24 20 0.5
PA6/ABS/APP/CNTs (1%) 56 24 20 1
表1  共混物的组分
图1  PA6和不同CNTs含量下, PA6/APP/CNTs 和PA6/ABS/APP/CNTs的热释放速率曲线
Sample code LOI /% Vertical flammability test
PA6 20.1 Not rating
PA6/APP 27.8 Not rating
PA6/APP/CNTs (0.125%) 27 Not rating
PA6/APP/CNTs (0.25%) 25.3 Not rating
PA6/APP/CNTs (0.5%) 22.1 Not rating
PA6/APP/CNTs (1%) 34.5 V-0
ABS/PA6/APP 23.2 Not rating
PA6/ABS/APP/CNTs (0.125%) 24 Not rating
PA6/ABS/APP/CNTs (0.25%) 31.5 V-0
PA6/ABS/APP/CNTs (0.5%) 31.5 V-0
PA6/ABS/APP/CNTs (1%) 24 Not rating
表2  PA6/APP/CNTs和PA6/ABS/APP/CNTs的LOI和垂直燃烧性能
图2  PA6以及不同CNTs含量的PA6/APP/CNTs 和PA6/ABS/APP/CNTs 的质量残留曲线
图3  ABS(a)和经甲酸萃取后的PA6/ABS/APP (b)的红外谱
图4  PA6/ABS/APP/CNTs (1%)的TEM像
图5  不同CNTs含量的PA6/APP/CNT和PA6/ABS/APP/CNTs的TGA曲线
图6  不同CNTs含量的PA6/APP/CNTs 在225oC下储能模量G'和频率ω的关系曲线
图7  不同CNTs含量的PA6/ABS/APP/CNTs在225oC下储能模量G'和频率ω的关系曲线
图8  不同CNTs 含量的PA6/APP/CNTs 和PA6/ABS/APP/CNTs 经过垂直燃烧测试后膨胀炭层的SEM像
图9  PA6/APP/CNTs和PA6/ABS/APP/CNTs 在锥形量热仪之后的残留炭层的照片
图10  不同CNTs含量下PA6/APP/CNTs (a) 及PA6/ABS/APP/CNTs (b) 在225℃下复数粘度(η*)和频率(ω)的关系曲线
Sample code Tensile strength /MPa Elongation at break /% Impact strength /(kJ/m2)
PA6 62.9±4.32 71.3±0.79 14.0±0.48
PA6/APP 43.0±5.46 6.0±1.09 6.2±0.70
PA6/APP/CNTs (0.125%) 24.4±3.88 2.3±0.16 3.5±0.49
PA6/APP/CNTs (0.25%) 39.1±2.20 3.5±0.10 6.2±0.64
PA6/APP/CNTs (0.5%) 28.5±2.15 3.0±0.97 5.2±0.54
PA6/APP/CNTs (1%) 30.3±1.53 2.7±0.21 3.7±0.21
PA6/PS/APP 21.3±1.03 2.1±0.10 3.8±0.76
PA6/ABS/APP/CNTs (0.125%) 27.3±2.11 2.5±0.25 3.4±0.54
PA6/ABS/APP/CNTs (0.25%) 16.7±0.08 11.7±1.73 8.7±1.11
PA6/ABS/APP/CNTs (0.5%) 14.6±0.12 4.8±0.34 3.6±0.68
表3  共混物的力学性能
1 T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. DouglasThermal degradation and flammability properties of poly(propylene)/carbon nanotube composites ,Macromol Rapid Commun., 23(13), 761(2002)
2 S. Peeterbroeck, F. Laoutid, B. Swoboda, J. M.Lopez-Cuesta, N. Moreau, J. B. Nagy, M. Alexandre, P. Dubois, How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites?, Macromol Rapid Commun., 28(3), 260(2007)
3 H. Y. Ma, P. A. Song, Z. P. Fang, Flame retarded polymer nanocomposites: Development, trend and future perspective, Sci. China Chem., 54(2), 302(2011)
4 B. Schartel, P. Potschke, U. Knoll, M. Abdel-Goad,Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites, Eur. Polym. J., 41(5), 1061(2005)
5 T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas, Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer, 45(12), 4227(2004)
6 G. Beyer, Short communication: Carbon nanotubes as flame retardants for polymers, Fire and Materials, 26(6), 291(2002)
7 T. Kashiwagi, F. Du, J. F. Douglas, K. I. Winey, R. H. Harris, J. R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites, Nat. Mater., 4, 928(2005)
8 T. Kashiwagi, F. Du, K. I. Winey, K. M. Groth, J. R. Shields, S. P. Bellayer, K. Hansoo, J. F. Douglas, Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration, Polymer, 46, 471(2005)
9 S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities, J. Mater. Chem., 17, 2283(2007)
10 G. B. Huang, S. Q. Wang, P. A. Song, C. L. Wu, Chen SQ and Wang X, Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites, Comp: Part A: Appl. Sci. Manuf., 59, 18(2014)
11 R. Delobel, B. M. Le, N. Ouassou, F. Alistiqsa, Thermal behaviours of ammonium polyphosphate-Pentaerythritol and ammonium pyrophosphate-pentaerythritol intumescent additives in polypropylene formulations, J. Fire Sci., 8(2), 85(1990)
12 X. Almeras, N. Renaut, C. Jama, B. M. Le, A. Tóth, S. Bourbigot, G. Marosi, F. Poutch, Structure and morphology of an intumescent polypropylene blend, J. Appl. Polym. Sci., 93(1), 402(2004)
13 H. Y. Ma, L. F. Tong, Z. B. Xu, Z. P. Fang, Functionalizing carbon nanotubes by grafting on intumescent flame retardant: nanocomposite synthesis, Morphology, Rheology, and Flammability, Adv. Funct. Mater., 18(3), 414(2008)
14 P. C. Ma, N. A. Siddiqui, G. Marom, J. K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites: Part A, 41, 1345(2010)
15 M. Wu, L. Shaw, Electrical and mechanical behaviors of carbon nanotube-filled polymer blends, J. Appl. Polym. Sci., 99(2), 477(2006)
16 S. Bose, A. R. Bhattacharyya, P. V. Kodgire, A. R. Kulkarni, A. S. Misra, Interactions induced dispersion and confinement of multi-walled carbon nanotubes in co-continuous polymer blends, J. Nanosci. Nanotechnol., 8(4), 1867(2008)
17 P. Kiliaris, C. D. Papaspyrides, R. Xalter, R. Pfaendner, Study on the properties of polyamide 6 blended with melamine polyphosphate and layered silicates, Polym. Degrad. Stab., 97, 1215(2012)
18 S. Bourbigot, B. M. Le, F. Dabrowski, J. W. Gilman, T. Kashiwagi, PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations, Fire Mater., 24(4), 201(2000)
19 X. Almeras, M. L. Bras, P. Hornsby, S. Bourbigot, G. Marosi, S. Keszei, F. Poutch, Effect of fillers on the fire retardancy of intumescent polypropylene compounds, Polym. Degrad. Stab., 82, 325(2003)
20 A. Riva, G. Camino, L. Fomperie, P. Amigoue, Fire retardant mechanism in intumescent ethylene vinyl acetate compositions, Polym. Degrad. Stab., 82, 341(2003)
21 J. W. Gilman,Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites, Appl Clay Sci., 15, 31(1999)
22 H. O. Yu, J. Liu, X. Wen, Z. W. Jiang, Y. J. Wang, L. Wang, J. Zheng, S. Y. Fu, T. Tang, Charing polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin, Polymer, 52, 4891(2011)
23 S. V. Levchik, L. Costa, G. Camino, Effect of the fire-retardant, ammonium polyphosphate, on the thermal decomposition of aliphatic polyamides: Part II--polyamide 6, Polym. Degrad. Stab., 36(3), 229(1992)
24 S. V. Levchik, G. F. Levchik, A. I. Balabanovich, G. Caminob, Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants, Polym. Degrad. Stab., 54, 217(1996)
25 T. Kashiwagi, J. Fagan, J. F. Douglas, K. Yamamoto, A. N. Heckert, S. D. Leigh, J. Obrzut, D. Fangming, S. L. Gibson, M. Minfang, K. I. Winey, R. Haggenmueller, Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites, Polymer, 48, 4855(2007)
26 S. Bourbigot, B. M. Le, R. Delobel, Fire degradation of an intumescent flame retardant polypropylene using the cone calorimeter, J. Fire Sci., 13, 3(1995)
27 X. Y. Wang, Y. Li, W. W. Liao, J. Gu, D. Li, A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene, Polym. Adv. Technol., 19, 1055(2008)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.