Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (11): 821-828    DOI: 10.11901/1005.3093.2015.144
  本期目录 | 过刊浏览 |
梯度分布多层SiC/TaC陶瓷复合界面改性C/C复合材料的微观结构及纳米压痕研究*
陈招科(),李斌,熊翔
中南大学 粉末冶金国家重点实验室 长沙 410083
Microstructure and Nano-indentation of C/C Composites Modified with Multi-interlayers of SiC/TaC Ceramics Gradient Distribution
Zhaoke CHEN(),Bin LI,Xiang XIONG
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

陈招科,李斌,熊翔. 梯度分布多层SiC/TaC陶瓷复合界面改性C/C复合材料的微观结构及纳米压痕研究*[J]. 材料研究学报, 2015, 29(11): 821-828.
Zhaoke CHEN, Bin LI, Xiang XIONG. Microstructure and Nano-indentation of C/C Composites Modified with Multi-interlayers of SiC/TaC Ceramics Gradient Distribution[J]. Chinese Journal of Materials Research, 2015, 29(11): 821-828.

全文: PDF(5343 KB)   HTML
摘要: 

用化学气相渗透(CVI)工艺, 控制反应气体的流动方向制备出陶瓷相呈梯度分布的多层SiC/TaC陶瓷复合界面改性C/C复合材料。结果表明, 沿着C/C复合材料厚度方向SiC/TaC陶瓷相的含量迅速减少, 界面厚度下降, 界面结构则从多层SiC/TaC层状界面(I区)转变为团簇状SiC/TaC陶瓷复相界面(II区)和单层TaC陶瓷界面(III区)。在I区, 多层SiC/TaC陶瓷复合界面由SiC层(i层)、TaC层(ii层)、镶嵌有SiC颗粒的TaC复相层(iii层)、镶嵌有TaC相的SiC复相层(iv层)以及TaC层(v层)等五个子界面层组成。在II区, 陶瓷相不再以层状形式包覆, 而是呈团簇状生长在炭纤维表面。本文还探讨了多层SiC/TaC陶瓷复合界面的纳米压痕硬度和杨氏模量的分布。

关键词 复合材料多层陶瓷复合界面纳米压痕梯度微观结构    
Abstract

Multi-interlayers of SiC/TaC ceramics gradient distribution were inserted into C/C composites by means of chemical vapor infiltration (CVI) and controlling the flow direction of reaction gas in the porous C/C preforms. The results show that, along the thickness direction of C/C composites, the content of SiC/TaC ceramic phase and the thickness of the multi-interlayer are decreased, while the structure of the ceramic phase also changes from multi-interlayer (Region I) to composite interlayer (Region II) and then single interlayer (Region III). In Region I, the SiC/TaC multi-interlayer is composed of five interlayers: the first SiC layer, the second TaC layer, the third TaC composite interlayer embedded with SiC particles, the fourth SiC composite interlayer embedded with fine mosaic-like TaC phase and the fifth white TaC layer. In Region II, the ceramic phase does no longer coat on the surface of carbon fiber in form of an interlayer, but of a cauliflower-like cluster. At last, the nano-hardness and elastic modulus of SiC/TaC ceramic multi-interlayer in Region I were also discussed.

Key wordscomposites    multi-interlayer    nano-indentation    gradient    microstructure
收稿日期: 2015-03-19     
基金资助:* 国家重点基础研究发展计划项目2011CB605805资助。
图1  沉积SiC/TaC陶瓷复合界面后C/C坯体的微观结构以及I区、II区、III区微观结构放大照片
图2  梯度分布SiC/TaC陶瓷复合界面改性C/C复合材料的微观结构和I区、II区、III区的微观结构及元素含量电子探针测量示意图,束斑直径为100 μm
图3  SiC/TaC陶瓷复合界面I区和II区的微观结构
图4  梯度分布SiC/TaC陶瓷界面改性C/C复合材料中I、II、III区C、Ta、Si元素的含量
图5  多层SiC/TaC陶瓷复合界面中元素含量面分布图
图6  I区中多层SiC/TaC陶瓷复合界面纳米压痕测试点及相应的压痕硬度和杨氏模量值
图7  多层SiC/TaC陶瓷复合界面中各压痕点的载荷-位移曲线
图8  多层SiC/TaC陶瓷复合界面中各压痕点的最大压痕深度和残留压痕深度
1 Y. H. Chu, H. J. Li, Q. G. Fu, L. H. Qi, L. Li, Y. T. Liu,Oxidation protection and behavior of C/C composites with an in situ SiC nanowire-SiC-Si/SiC-Si coating, Corrosion Science, 70(5), 285(2013)
2 H. J. Zhou, L. Gao, Z. Wang, S. M. Dong,ZrB2-SiC oxidation protective coating on C/C composites prepared by vapor silicon infiltration process, Journal of the American Ceramic Society, 93(4), 915(2010)
3 H. J. Li, G. S. Jiao, K. Z. Li, C. Wang,Multilayer oxidation resistant coating for SiC coated carbon carbon composites at high temperature, Materials Science and Engineering A, 475(1-2), 279(2008)
4 W. Kowbel, J.C. Withers,CVD and CVR silicon-based functionally gradient coatings on C/C composites, Carbon, 33(4), 415(1995)
5 J. C. Han, X. D. He, S. Y. Du,Oxidation and ablation of 3D carbon-carbon composite at up to 3000℃, Carbon, 33(4), 473(1995)
6 S. Labruquére, H. Blanchard, R. Pailler, R. Naslain,Enhancement of the oxidation resistance of interfacial area in C/C composites, Part II: Oxidation resistance of B-C, Si-B-C and Si-C coated carbon performs densified with carbon, Journal of the European Ceramic Society, 22(7), 1011(2002)
7 C.Verdon, O. Szwedek, S. Jacques, A. Allemand, Y. L. Petitcorps,Hafnium and silicon carbide multilayer coating for the protection of carbon composites, Surface & Coating Technology, 230, 124(2013)
8 A. Sayir,Carbon fiber reinforced hafnium carbide composite, Journal of Materials Science, 39(19), 5995(2004)
9 S. A. Chen, Y. D. Zhang, C. R. Zhang, D. Zhao, H. F. Hu, Z. B. Zhang,Effects of SiC interphase by chemical vapor deposition on the properties of C/ZrC composite prepared via precursor infiltration and pyrolysis route, Materials and Design, 46, 497(2013)
10 Y. Z. Zhu, Z. R. Huang, S. M. Dong, M. Yuan, D. L. Jiang,Correlation of PyC/SiC interphase to the mechanical properties of 3D HTA C/SiC composites fabricated by polymer infiltration and pyrolysis, New Carbon Materials, 22(4), 327(2007)
11 X. Xiong, Y. L. Wang, G. D. Li, Z. K. Chen,Mechanical properties and fracture behavior of CVI-SiC/TaC modified C/C composite, Acta Materiae Compositae Sinica, 25(5): 91(2008)
11 (熊 翔, 王雅雷, 李国栋, 陈招科, CVI-SiC/TaC改性C/C复合材料的力学性能及断裂行为, 复合材料学报, 25(5), 91(2008) )
12 Z. K. Chen, X. Xiong, B. Y. Huang, G. D. Li, P. Xiao, H. B. Zhang, Y. L. Wang,Ablation behaviors of C/C composites with pyrocarbon(PyC)-TaC-PyC multi-interlayers in oxyacetylene flame, Acta Materiae Compositae Sinica, 26(3), 155(2009)
12 (陈招科, 熊 翔, 黄伯云, 李国栋, 肖 鹏, 张红波, 王雅雷, 含PyC-TaC-PyC复合界面C/C材料的氧乙炔氧烧蚀行为, 复合材料学报, 26(3), 155(2009))
13 Z. K. Chen, X. Xiong, G. D. Li, Y. L. Wang,Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlaye, Applied Surface Science, 255(22), 9217(2009)
14 X. Xiong, Y. L. Wang, Z. K. Chen, G. D. Li,Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers, Solid State Sciences, 11(8), 1386(2009)
15 Y. C. Zhu, S. Ohtani, Y. Sato, N. Iwamoto,Formation of a functionally gradient (Si3N4+SiC)/C layer for the oxidation protection of carbon-carbon composites, Carbon, 37, 1417(1999)
16 S. P. Li, K. Z. Li, L. J. Guo,SiC-HfSi2-TaSi2 High temperature anti-ablation compound coating on carbon/carbon composites, Journal of the Chinese Ceramic Society, 37(5), 804(2009)
16 (李淑萍, 李克智, 郭领军, 碳/碳复合材料SiC-HfSi2-TaSi2 抗烧蚀复合涂层, 硅酸盐学报, 37(5), 804(2009))
17 B. Li, Z. K. Chen, X. Xiong,Microstructure and mechanical properties of C/C composites with gradient distributed TaC interlayer, Materials Engineering, (9), 6(2013)
17 (李 斌, 陈招科, 熊 翔, 梯度分布TaC界面改性C/C复合材料的微观结构与力学性能, 材料工程, (9), 6(2013))
18 W. C. Oliver, G. M. Pharr,Measurement of hardness and elastic modulus by instrumented indentation: advanced in understanding and refinements to methodology, J. Mater. Res., 19(1), 3(2004)
19 Q. Zhang, L. F. Cheng, L. T. Zhang, Y. D. Xu,Thermal expansion behavior of carbon fiber reinforced chemical-vapor-infiltrated silicon carbide composites from room temperature to 1400℃, Materials Letters, 60(27), 3245(2006)
20 Y. Long, A. Javed, I. Shapiro, Z. K. Chen, X. Xiong, P. Xiao,The effect of substrate position on the microstructure and mechanical properties of SiC coatings on carbon/carbon composites, Surface and Coatings Technology, 206(2-3), 568(2011)
21 Z. K. Chen, X. Xiong, G. D. Li, W. Sun, Y. Long,Texture structure and ablation behavior of TaC coating on carbon/carbon composites, Applied Surface Science, 257(2), 656(2010)
22 Z. K. Chen, X. Xiong,Microstructure, mechanical properties and oxidation behavior of carbon fiber reinforced PyC/C-TaC/PyC layered-structure ceramic matrix composites prepared by chemical vapor infiltration, Materials Chemistry and Physics, 141(2-3), 613(2013)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 刘欢, 李幸福, 杨易, 李聪, 付正容, 柏云花, 张正洪, 朱心昆. 梯度结构铜铝合金的室温加工硬化行为[J]. 材料研究学报, 2023, 37(2): 95-101.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.