Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (3): 207-212    DOI: 10.11901/1005.3093.2014.289
  本期目录 | 过刊浏览 |
温轧工艺对纳米贝氏体相变速率、组织和力学性能的影响
何建国1,2,赵爱民1,2(),黄耀3,智超1,2,赵复庆1,2
1. 北京科技大学冶金工程研究院 北京 100083
2. 现代交通金属材料与加工技术北京实验室 北京 100083
3. 中国电力科学研究院 北京 100192
Effect of Warm Rolling Process on Phase Transformation, Microstructure and Mechanical Properties of Nano-bainite Steel
Jianguo HE1,2,Aimin ZHAO1,2,**(),Yao HUANG3,Chao ZHI1,2,Fuqing ZHAO1,2
1. Metallurgical Engineering Research Institute, University of Science and Technology Beijing,
Beijing 100083, China
2. Beijing Laboratory for Modern Transportation Advanced Metal Materials and Processing Technology,
Beijing 100083, China
3. China Electric Power Research Institute, Beijing 100192, China
引用本文:

何建国,赵爱民,黄耀,智超,赵复庆. 温轧工艺对纳米贝氏体相变速率、组织和力学性能的影响[J]. 材料研究学报, 2015, 29(3): 207-212.
Jianguo HE, Aimin ZHAO, Yao HUANG, Chao ZHI, Fuqing ZHAO. Effect of Warm Rolling Process on Phase Transformation, Microstructure and Mechanical Properties of Nano-bainite Steel[J]. Chinese Journal of Materials Research, 2015, 29(3): 207-212.

全文: PDF(3588 KB)   HTML
摘要: 

采用温轧加等温热处理工艺制备纳米贝氏体钢, 研究了形变温度对纳米贝氏体相变速率的影响。结果表明, 形变过冷奥氏体在503 K的贝氏体等温转变时间由常规等温淬火的50 h缩短至20 h, 纳米贝氏体钢的抗拉强度为2127 MPa、延伸率为4%。在实验温度范围内进行的过冷奥氏体形变均能促进纳米贝氏体相变, 相变速率随着形变温度的降低而提高。过冷奥氏体形变量大于30%后残余奥氏体组织明显细化, 块状残余奥氏体全部转变为薄膜状。温轧工艺可在不恶化其它力学性能的前提下加速低温贝氏体相变, 从而缩短热处理时间使生产成本降低。

关键词 金属材料纳米贝氏体温轧相变动力学组织结构力学性能    
Abstract

Nanostructured bainite steel with an ultimate tensile strength of 2127 MPa, elongation of 4% has been obtained by warm rolling followed with isothermal heat treatment.The effect of deformation temperature on transformation of nano bainites has been investigated. The results show that with a proper warm defromation, the time required for the transformation of the supercooled austenite into bainite can be shortened from 50 h to 20 h. The deformation rates of supercooled austenite adopted at all temperatures in the experiments can accelerate the low temperature nanobainite transformation, while the transformation rate increased with the decreasing deformation temperature. With a deformation rate above 30%, the retained austenites were sharply refined and the blocky austenites were diminished. The low temperature nano bainite transformation can be accelerated by warm rolling process without harm to the strength, thus shortening the time of heat treatment resulting in cost saving of the steel production.

Key wordsmetallic materials    nanobainite    warm rolling    transformation kinetic    microstructure    mechanical properties
收稿日期: 2014-06-17     
基金资助:* 国家自然科学基金51271035和51371032资助项目。
图1  原位热模拟实验工艺示意图
图2  温轧工艺示意图
图3  纳米贝氏体等温相变动力学曲线
图4  在不同温度20%变形量对纳米贝氏体相变动力学的影响
图5  在不同温度变形量为20%纳米贝氏体转变速率与时间的关系
图6  在503 K不同压下量温轧后等温的纳米贝氏体组织SEM像
图7  温轧总压下量为33%和50%的纳米贝氏体显微结构TEM像
Process Pass Strain Time Rp/MPa Rm/MPa Total elongation/% HV
Aus 0 0 2 weeks 1980 2040 6.1 601
WR3 3 25% 20 h 1751 1802 5.5 591
WR4 4 33% 20 h 1851 1890 14.4 589
WR6 6 50% 20 h 1802 2127 4.0 650
表1  等温淬火和温轧纳米贝氏体钢的力学性能
图8  不同工艺组织中残余奥氏体的含量及含碳量
1 F. G.Caballero, H. K. D. H.Bhadeshia,Design of novel high strength bainitic steels_Part 1, Materials Science and Technology, 17(5), 512(2001)
2 F. G. Caballero, H. K. D. H. Bhadeshia, K.Mawella, D. G. JonesP. Brown,Design of novel high strength bainitic steels_Part 2, Materials Science and Technology, 17(5), 517(2001)
3 F. G. Caballero, H. K. D. H. Bhadeshia, K. Mawella, D. G. JonesP. Brown,Very strong low temperature bainite, Materials science and technology, 18(3), 279(2002)
4 C. Garcia Mateo, F. G. Caballero, H. K. D. H. Bhadeshia,Development of hard bainite, ISIJ International, 43, 1238(2003)
5 F. G. Caballero, H. K. D. H. Bhadeshia,Very strong bainite, Current Opinion in Solid State and Materials Science, 8(3), 251(2004)
6 C. G. Mateo, H. K. D. H. Bhadeshia, F. G. Caballero,Mechanical properties of low-temperature bainite, Materials Science Forum, 500, 495(2005)
7 H. K. D. H. Bhadeshia,Large chunks of very strong steel, Materials Science and Technology, 21(11), 1293(2005)
8 H. K. D. H. Bhadeshia,Nanostructured bainite, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466(2113), 3(2010)
9 H. K. D. H. Bhadeshia,The first bulk nanostructured metal, Science and Technology of Advanced Materials, 14(1), 14202(2013)
10 K. Hase, C. G. Mateo, H. K. D. H. Bhadeshia,Bainite formation influenced by large stress, Materials science and technology, 20(12), 1499(2004)
11 W. Gong, Y. Tomota, M. S. KooY. Adachi,Effect of ausforming on nanobainite steel, Scripta Materialia, 63(8), 819(2010)
12 W. Gong, Y. Tomota, Y. Adachi, A. M. Paradowska, J. F. KelleherS. Y. Zhang,Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel, Acta Materialia, 61(11), 4142(2013)
13 F. G. Caballero, M. K. Miller, C. G. Mateo,Atom probe tomography analysis of precipitation during tempering of a nanostructured bainitic steel, Metallurgical and Materials Transactions A, 42(12), 3660(2011)
14 M. N. Yoozbashi, S. YazdaniT. S. Wang,Design of a new nanostructured, high-Si bainitic steel with lower cost production, Materials & Design, 32(6), 3248(2011)
15 S. Khare, K. Lee, H. K. D. H. Bhadeshia,Carbide-Free bainite_ compromise between rate of transformation and properties, Metallurgical and Materials Transactions A, 41(4), 922(2010)
16 Y. Huang, A. M. Zhao, J. G. He, X. P. Wang, Z. G. WangL. Qi,Microstructure, crystallography and nucleation mechanism of NANOBAIN steel, International Journal of Minerals, Metallurgy, and Materials, 20(12), 1155(2013)
17 C. G. Mateo, M. Peet, F. G. CaballeroH. K. D. H. Bhadeshia,Tempering of hard mixture of bainitic ferrite and austenite, Materials Science and Technology, 20(7), 814(2004)
18 C. G. Mateo, F. G. Caballero,The role of retained austenite on tensile properties of steels with bainitic microstructures, Materials Transactions, 46(8), 1839(2005)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.