Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (3): 185-194    DOI: 10.11901/1005.3093.2014.291
  本期目录 | 过刊浏览 |
卷取温度对大变形(B+M/A)X80管线钢组织和性能的影响*
马晶(),张骁勇,程时遐,高惠临
西安石油大学材料科学与工程学院 西安 710065
Effect of Coiling Temperature on Microstructure and Mechanical Properties of (B+M/A) X80 Pipeline Steel with Excellent Deformability
Jing MA(),Xiaoyong ZHANG,Shixia CHENG,Huilin GAO
School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
引用本文:

马晶,张骁勇,程时遐,高惠临. 卷取温度对大变形(B+M/A)X80管线钢组织和性能的影响*[J]. 材料研究学报, 2015, 29(3): 185-194.
Jing MA, Xiaoyong ZHANG, Shixia CHENG, Huilin GAO. Effect of Coiling Temperature on Microstructure and Mechanical Properties of (B+M/A) X80 Pipeline Steel with Excellent Deformability[J]. Chinese Journal of Materials Research, 2015, 29(3): 185-194.

全文: PDF(7337 KB)   HTML
摘要: 

通过卷取连续HOP(heating on-line partitioning)技术, 使X80管线钢获取了(B+M/A)复相组织和大变形性能。采用力学性能测试、显微分析和X射线衍射方法研究了在不同卷取温度条件下(B+M/A)X80管线钢的组织演变规律, 分析了显微组织对其力学性能的影响。结果表明, 随着卷取温度的升高, 贝氏体的含量和位错密度减小, 残余奥氏体含量增加, 导致材料强度降低和塑性增加。在高的卷取温度条件下, 碳化物的析出和残余奥氏体的分解是材料强度增加和塑性减小的显微组织因素。在一定卷取温度下, 实验钢有低的屈强比、高的均匀伸长率和和高的形变强化指数, 符合大变形管线钢的技术要求。

关键词 金属材料(B+M/A)X80大变形管线钢卷取连续配分卷取温度组织性能    
Abstract

High deformability X80 pipeline steel with microstructure composed of bainite and martinsite/austenite (B+M/A) can be obtained through the coiling continuous partitioning process. Effect of coiling temperature on the microstructure evolution and mechanical performance of the (B+M/A) X80 pipeline steel was studied by means of microscopic analysis, X-ray diffraction and mechanical property tests. The results show that with the increasing coiling temperature, the strength of the steel decreases and the ductility increases because of the decrease amount of bainite and dislocation density, as well as the increase amount of retained austenite. By a high coiling temperature, both of the precipitation of carbides and the decomposition of retained austenites result in the increase of strength and the decrease of plasticity. With a process by proper coiling temperature, the produced steel with such (B+M/A) dual-phase structure may exhibit a comprehensive mechanical performance with such as lower ratio of yield to strength, higher uniform elongation and strain hardening index, which meets the technical requirements of high deformability pipeline steel.

Key wordsmetallic materials    (B+M/A) X80 pipeline steel with excellent deformability    the coiling continuous partitioning process    coiling temperature    microstructure and properties
收稿日期: 2014-06-17     
基金资助:* 国家自然科学基金51174165, 陕西省重点学科专项资金YS37020203和陕西省自然科学基金2014JM6232资助项目。
图1  卷取连续HOP工艺示意图
C Si Mn P S B Al Mo Cr Ni Cu V Nb Ti
0.049 0.23 1.80 0.011 0.0025 <0.0001 0.027 0.28 0.018 0.25 0.17 0.0069 0.064 0.013
表1  X80实验钢的化学成分
图2  不同卷取温度下X80的应力-应变曲线
图3  X80实验钢的强塑性与卷取温度的关系
Coiling temperature/℃ 380 410 440 470 500
Rt0.5 /Rm 0.76 0.76 0.79 0.77 0.76
UA/% 9.2 10.4 12.2 12.1 12.9
n 0.14 0.13 0.12 0.14 0.16
表2  实验钢在不同卷取温度下的屈强比、均匀伸长率和形变强化指数
图4  不同卷取温度下X80实验钢的冲击韧性
图5  不同卷取温度下X80实验钢组织的SEM像
图6  X80碳化物的析出
Coiling Temperature/℃ 380 410 440 470 500
Content of Bainite /% 88.2 86.6 85.8 84.8 83.9
表3  不同卷取温度下贝氏体的体积分数
图7  典型卷取温度下的贝氏体的TEM像
图8  典型卷取温度下的贝氏体的高倍TEM像
图9  卷取温度470℃下碳化物的析出
图10  典型卷取温度下的M/A形态
图11  卷取温度为440℃时M/A组元的明场、暗场像及电子衍射谱
图12  不同卷取温度下M/A含量
图13  卷取温度为380℃时残余奥氏体的明场、暗场像及电子衍射谱
图14  卷取温度为440℃时残余奥氏体的明场、暗场像及电子衍射谱
1 Nobuyuki Ishikawa,Mitsuhiro Okatsu, Ryuji Muraoka, Joe Kondo, Material development and strain capacity of grade X100 high strain linepipe produced by heat treatment online process, in: Proceedings of IPC2008 7th International Pipeline Conference, edited by ASME (Calgary, Alberta, Canada, 2008) p.1-8
2 Nobuyuki Ishikaka, Mitsuhiro Okatau, Shigeru Endo, Joe Kondo,Design concept and production of high deformability linepipe, in: Proceedings of IPC2006 6th International Pipeline Conference, edited by ASME ( Calgary, Alberta, Canada, 2006) p.2.
3 Toyohisa Shinmiya,Nobuyuki Ishikawa, Mitsuhiro Okatsu, Shigeru Endo, Nobuo Shikanai, Joe Kondo, Development of high deformability linepipe with resistance to strain-aged hardening by heat, in: Proceedings of the Sixteenth International Offshore and Polar Engineering Conference, edited by the International Society of Offshore and Polar Engineers(ISOPE) (Lisbon, Portugal, 2007), p.2963
4 Mitsuhiro Okatsu,Toyohisa Shinmiya, Nobuyuki Ishikawa, Shigeru Endo, Joe kondo, Development of high strength linepipe with excellent deformability, in:ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering (Halkidiki, Greece, 2006) p.170-176
5 Ryuji Muraoka, Joe Kondo, Production of grade X80 high strain linepipes for seismic region application, in: Proceedings of the 8th International Pipeline Conference (Calgary, Alberta, Canada, 2010) p. 56
6 Nobuyuki Ishikawa, Mitsuhiro Okatsu, Mass production and installation of X100 linepipe for strain-based design application, in: Proceedings of IPC2008 7th International Pipeline Conference (Calgary, Alberta, Canada, 2010) p. 64
7 G. A. Thomas J. G. Speer, D. K. Matlock,Quenched and partitioned microstructures produced via Gleeble simulations of hot-strip mill cooling practices, Metallurgical and Materials Transactions A, 42A, 3652(2011)
8 G. John, E. Speer, D.E. Moor, K.O. Findley, D.K. Matlock, B.C. DE. Cooman, D.V. Edmonds,Analysis of microstructure evolution in quenching and partitioning automotive sheet steel, Metallurgical and Materials Transactions A, 42A, 3591(2011)
9 GAO Huilin,ZHANG Xiaoyong, Research and development of large deformability pipeline steels, Welded Pipe and Tube, 37(4), 14(2014)
9 (高惠临, 张骁勇, 大变形管线钢的研究和开发, 焊管, 37(4), 14(2014))
10 M. J. Santofimia, L. Zhao, J. Sietsma,Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metallurgical and Materials Transactions A, 40, 46(2009)
11 WANG Jianjun,JIAO Guipeng, LIU Yandong, LIU Chunming, Influence of quenching and partitioning process on microstructure and properties of a C-Si-Mn steel, Transactions of Materials and Heat Treatment, 34(3), 105(2013)
11 (王建军, 焦贵鹏, 刘沿东, 刘春明, Q&P热处理工艺对C-Si-Mn钢组织性能的影响, 材料热处理学报, 34(3), 105(2013))
12 GAO Huilin, Pipeline and Pipeline Steel (Beijing, China Petrochemical Press, 2012) p.8
13 FENG Yaorong, GAO Huilin, HUO Chunyong, Analysis and Identification of Microstructure of Pipeline Steel (Xi’an, Shaanxi Science and Technology Press, 2012) p.25-110
13 (p. 25-110)
14 YU Qingbo,SUN Ying, NI Hongxin, ZHANG Kaifeng, Effect of different bainitic microstructures on the mechanical properties of low-carbon steel, Journal of Mechanical Engineering, 45(12), 286(2009)
14 (于庆波, 孙 莹, 倪宏昕, 张凯峰, 不同类型的贝氏体组织对低碳钢力学性能的影响, 机械工程学报, 45(12), 286(2009))
15 SHANG Chengjia,YANG Shanwu, WANG Xuemin, HOU Huaxing, YU Gongli, WANG Wenzhong, Microstructure and mechanical properties of low carbon bainitic steel, Iron and Steel, 40(4), 59(2005)
15 (尚成嘉, 杨善武, 王学敏, 侯华兴, 于功利, 王文仲, 低碳贝氏体钢的组织类型及其对性能的影响, 钢铁, 40(4), 59(2005))
16 HAO Shiying,GAO Huilin, YAN Kaijuan, ZHANG Xiaoyong, JI Lingkang, LI Weiwei, Microstructure and mechanical properties of X80 pipeline steel with excellent deformability, Journal of Materials Engineering, (3), 65(2012)
16 (郝世英, 高惠临, 闫凯鹃, 张骁勇, 吉玲康, 李为卫, 一种大变形管线钢的组织-性能分析, 材料工程, (3), 65(2012))
17 TONG Ke,ZHUANG Chuanjing, LIU Qiang, HAN Xinli, ZHU Lixia, HE Xiaodong, Microstructure characteristics of M/A islands in high grade pipeline steel and its effect on mechanical properties, Materials for Mechanical Engineering, 35(2), 4(2011)
17 (仝 珂, 庄传晶, 刘 强, 韩新利, 朱丽霞, 何晓东, 高钢级管线钢中M/A岛的微观特征及其对力学性能的影响, 机械工程材料, 35(2), 4(2011))
18 ZENG Ming,HU Shuiping, ZHAO Zhengzhi, JIANG Haitao, WANG Zhe, Effects of process parameters on martensite-austenite island and mechanical properties of pipeline steel X100, Materials for Mechanical Engineering, 35(12), 29(2011)
18 (曾 明, 胡水平, 赵征志 江海涛, 王 哲, 工艺参数对X100管线钢中M-A岛和力学性能的影响, 机械工程材料, 35(12), 29(2011))
19 REN Yongqiang,SHANG Chengjia, ZHANG Hongwei, YUAN Shengfu, CHEN Erhu, Effect of retained austenite on toughness and plasticity of 0.23C-1.9Mn-1.6Si steel, Chinese Journal of Materials Research, 28(4), 274(2014)
19 (任勇强, 尚成嘉, 张宏伟, 袁胜福, 陈二虎, 0.23C-1.9Mn-1.6Si钢中的残余奥氏体对韧塑性的影响, 材料研究学报, 28(4), 274(2014))
20 WANG Ying,ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua, A new effect of retained austenite on ductility enhancement of low carbon Q-P-T Steel, Acta Metallurgical Sinica, 48(6), 641(2012)
20 (王 颖, 张 柯, 郭正洪, 陈乃录, 戎咏华, 残余奥氏体增强低碳Q-P-T钢塑形的新效应, 金属学报, 48(6), 641(2012))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.