Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (10): 756-762    DOI: 10.11901/1005.3093.2014.124
  本期目录 | 过刊浏览 |
加载路径对Sr变质A319铝合金疲劳行为的影响
田丹丹,何国球(),沈月,刘晓山,樊康乐,莫德锋
同济大学材料科学与工程学院 上海市金属功能材料开发应用重点实验室 上海 201804
Effect of Loading Path on Fatigue Behavior of A319 Cast Aluminum Alloy
Dandan TIAN,Guoqiu HE(),Yue SHEN,Xiaoshan LIU,Kangle FAN,Defeng MO
School of Materials Science and Engineering, Tongji University, Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Shanghai 201804
引用本文:

田丹丹,何国球,沈月,刘晓山,樊康乐,莫德锋. 加载路径对Sr变质A319铝合金疲劳行为的影响[J]. 材料研究学报, 2014, 28(10): 756-762.
Dandan TIAN, Guoqiu HE, Yue SHEN, Xiaoshan LIU, Kangle FAN, Defeng MO. Effect of Loading Path on Fatigue Behavior of A319 Cast Aluminum Alloy[J]. Chinese Journal of Materials Research, 2014, 28(10): 756-762.

全文: PDF(5444 KB)   HTML
摘要: 

研究了Sr变质A319铸造铝合金在0.2%应变幅不同加载路径条件下的疲劳性能, 包括循环应力响应特征及疲劳寿命, 并分析了失效试样的断口特征以及Si颗粒的破坏方式。结果表明: 在不同加载路径下材料发生循环硬化程度和速率从大到小排序是: 圆形加载、比例加载和单轴加载; 疲劳寿命随着加载路径的变化与材料循环硬化程度和速率随着加载路径的变化相对应。断口分析结果表明, 宏观断口在比例路径下表现为“人”字形的两条主裂纹, 且从单轴、比例到圆形路径, 裂纹源区逐渐不明显, 裂纹源区和稳定扩展区尺寸也变小; 在单轴加载条件下裂痕的断面基本上与主轴平行, 而在多轴加载条件下裂痕的分布较为分散。

关键词 金属材料A319铸造铝合金加载路径疲劳性能    
Abstract

The fatigue behavior of A319 cast aluminum alloy was investigated in terms of its cycle stress response characters and fatigue life under a 0.2% strain amplitude with several loading paths, such as uniaxial, proportional and non-proportional ones. While the fracture characters of failed specimen and the cracking modes of Si particles were also investigated. Under the condition of same equivalent stress, the effectiveness of the three loading paths on the hardening of the alloy in terms of the degree and rate of hardening may be ranked in an order of high to low as follows: non-proportional > proportional > uniaxial, corresponding with the fatigue life exactly. The fractography of the alloy presented two major cracks with the herringbone pattern under the proportional loading. Additionally, the crack initiation site was gradually blurred when the loading path changing from uniaxial, to proportional and then to nonproportional ones, in the meanwhile the size of the crack initiation site and propagation region also decreased. The crack surface basically paralleled to the loading direction under uneasily loading, however, multi-cracks with different directions occurred under multi-axial loading.

Key wordsmetallic materials    A319 cast aluminum alloy    loading path    fatigue properties
收稿日期: 2014-03-19     
Element Si Cu Mg Fe Mn Zn Ti Sr Ni Al
A319-Sr 6.4 3.1 0.37 0.52 0.31 0.53 0.04 0.016 0.02 Bal.
表1  Sr变质A319合金的化学成分
图1  疲劳试样的尺寸
图2  多轴加载路径的示意图
图3  Sr变质前后A319铝合金的原始组织
Material Young’s modulus /GPa Yield strength /MPa Tensile strength /MPa Elongation /%
A319 74.2 211 230 2
74.8 210 226 1.5
A319-Sr 75.1 220 253 2
75.0 218 242 1
表2  变质前后A319的力学性能
图4  Sr变质A319合金在不同路径下的等效应力-循环周次曲线
Material Strain amplititude Loading path Fatigue life Average life
A319-Sr 0.2% Uniaxial 155930 148375
124873
164322
Proportional 44610 59482
65110
68726
Circle 5993 17232
12368
33336
表3  Sr变质A319合金在不同加载状态下的疲劳寿命
图5  不同加载路径下试样断口的宏观形貌
图6  疲劳裂纹萌生区的形貌
图7  疲劳裂纹扩展区的形貌
图8  疲劳裂纹最终断裂区形貌
图9  主断裂面附近Si颗粒的断裂
图10  Si颗粒断裂对Sr变质A319裂纹萌生扩展的影响
图11  Si颗粒的断裂方式
1 K. Narayan,Prabhu, Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its effect on Wear Properties, Transactions of the Indian Institute of Metals, 67(1), 1(2013)
2 Y. X. Zhao, B. Zhang,Failure analysis on bearings of railway freight cars with radial bogie, Advanced Materials Research, 544, 286(2012)
3 Tong Gao, Yong-rui Zhang, Xiang-fa Liu, Complex modification effect by ZrAlSi intermetallic and element Sr on the microstructure and mechanical properties of hypereutectic Al–Si alloys, Journal of Alloys and Compounds, 589, 25(2014)
4 Lei Zeng, J. Sakamoto, A. Fujii, H. Noguchi, Role of eutectic silicon particles in fatigue crack initiation propagation fatigue strength characteristics of cast aluminum alloy A356, Engineering Fracture Mechanics, 115, 1(2014)
5 P. Das, R. Jayaganthan, T. Chowdhury, I. V. Singh,Fatigue behaviour and crack growth rate of cryorolled Al 7075 alloy, Materials Science and Engineering: A, 528(24), 7124(2011)
6 A. Fabrizi, S. Ferraro, G. Timelli, The influence of Sr, Mg and Cu addition on the microstructural properties of a secondary AlSi9Cu3 (Fe) die casting alloy, Materials Characterization, 85, 13(2013)
7 Miao Long, Yi-ping Lu, Yu-bo Zhang, Ying Fu, Ting-ju Li, Effect of ultrasonic treatment and Sr addition on microstructure of Al-20% Si alloy, China Foundry, 10(4)(2013)
8 L. Dietrich, J. Radziejewska. The fatigue damage development in a cast Al–Si–Cu alloy, Materials & Design, 2(1), 322(2011)
9 Guo-hua Zhang, Jian-xin Zhang, Bing-chao Li, Wei Cai, Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al–Si piston alloy during low-cycle fatigue loading, Materials Science and Engineering A, 561, 26(2013)
10 K. S. Chan, Roles of microstructure in fatigue crack initiation, International Journal of Fatigue, 32(9), 1428(2010)
11 Y. Jang, S. Jin, Y. Jeong, S. Kim, Fatigue crack initiation mechanism for cast 319-T7 aluminum alloy, Metallurgical and Materials Transactions A, 40(7), 1579(2009)
12 M. Roy, Y. Nadot, D. M. Maijer, G. Benoit,Multiaxial fatigue behaviour of A356-T6, Fatigue & Fracture of Engineering Materials & Structures, 35(12), 1148(2012)
13 R. Pippan, H. Weinhandl,Discrete dislocation modelling of near threshold fatigue crack propagation, International Journal of Fatigue, 32(9), 1503(2010)
14 Li Wan, Zu-qi Hu, Shu-sen Wu, Xue-qiang Liu, Mechanical properties and fatigue behavior of vacuum-assist die cast AlMgSiMn alloy, Materials Science and Engineering A, 576, 252(2013)
15 Y. Xue, H. El Kadiri, M. F. Horstemeyer, J. B. Jordon, H. Weiland,Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy, Acta Materialia, 55(6), 1975(2007)
16 Guo-hua Zhang,Jian-xin Zhang, Bing-chao Li, Wei Cai, Characterization of tensile fracture in heavily alloyed Al-Si piston alloy, Progress in Natural Science: Materials International, 21(5), 380(2011)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.