Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (1): 59-66    DOI: 10.11901/1005.3093.2013.493
  本期目录 | 过刊浏览 |
掺固硫灰活性粉末混凝土的制备和性能*
高燕,吕淑珍(),卢忠远,李军,张丹
西南科技大学 四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地 绵阳 621010
Preparation and Properties of Reactive Powder Concrete with Circulating Fluidized Bed Combustion Fly Ash
Yan GAO,Shuzhen LV(),Zhongyuan LU,Jun LI,Dan ZHANG
State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010
引用本文:

高燕,吕淑珍,卢忠远,李军,张丹. 掺固硫灰活性粉末混凝土的制备和性能*[J]. 材料研究学报, 2014, 28(1): 59-66.
Yan GAO, Shuzhen LV, Zhongyuan LU, Jun LI, Dan ZHANG. Preparation and Properties of Reactive Powder Concrete with Circulating Fluidized Bed Combustion Fly Ash[J]. Chinese Journal of Materials Research, 2014, 28(1): 59-66.

全文: PDF(2912 KB)   HTML
摘要: 

进行掺固硫灰活性粉末混凝土(RPC)配合比的正交设计试验, 研究了养护制度对掺固硫灰RPC强度和收缩性能的影响以及固硫灰对RPC收缩性能的影响。结果表明: 应用固硫灰、硅灰、高效减水剂、中级石英砂、PO42.5R及湿热养护工艺, 可配制出抗折强度26 MPa、抗压强度140 MPa的活性粉末混凝土; 湿热养护可促进掺固硫灰RPC的水化, 形成较致密的结构, 其早期强度比标准养护高30 MPa左右, 但高温使早期形成的AFt转变成AFm, 故后期的强度有所倒缩; 与标准养护相比, 湿热养护促进掺固硫灰RPC的早期收缩, 降低了其后期干缩, 但总体收缩率仍大于标准养护; 固硫灰的膨胀性特性可有效改善RPC自收缩大的缺点。

关键词 无机非金属材料固硫灰活性粉末混凝土养护制度强度收缩率    
Abstract

The mix proportion design of reactive powder concrete (RPC) with circulating fluidized bed combustion (CFBC) fly ash was done through orthogonal design. The effect of curing system on strength and shrinkage property of RPC with CFBC fly ash, and the effect of CFBC fly ash on shrinkage property of RPC were investigated. The results show that RPC which could have flexural strength of 26 MPa and compressive strength of 140 MPa was prepared by using CFBC fly ash, silica fume, superplasticizer, intermediate quartz sand, PO42.5R and hydrothermal curing treatment; Hydrothermal curing can promote the hydration of RPC with CFBC fly ash and form a relatively dense structure, so its early strength was higher than that of standard curing about 30 MPa, but high temperature made early-formed AFt transform into AFm, so later strength was decreased; Compared to standard curing, Hydrothermal curing promoted the early shrinkage of RPC with CFBC fly ash, reduced the late drying shrinkage, but its overall shrinkage rate was still greater than that of standard curing; The expansibility characteristics of CFBC fly ash can effectively reduce the large self-shrinkage of RPC.

Key wordsinorganic non-metallic material    CFBC fly ash    RPC    curing system    strength    shrinkage rate
收稿日期: 2013-07-12     
基金资助:* 十二五国家科技支撑计划2011BAA04B04(11zg410105)和四川省科技支撑计划11zs2116 资助项目。
Material Loss SiO2 Al2O3 Fe2O3 CaO MgO SO3 f-CaO
Cement 4.98 21.51 5.33 3.18 61.63 2.68 3.30
CFBC fly ash 4.50 45.22 15.39 12.02 10.70 1.92 10.72 1.21
Silica fume 6.38 87.65 0.37 0.08 0.44 1.47
表1  原料的化学组成
图1  固硫灰的XRD谱
Level Factor (the ratio of factor to cementing material)
Water-binder ratio(A) Silica fume(B)/% CFBC fly ash(C)/% Intermediate quartz sand(D) Superplasticizer(E) /%
1 0.2 0 0 0.8 0.5
2 0.18 5 5 1.0 0.8
3 0.22 10 10 1.2 1.0
4 0.17 15 15 1.4 1.5
表2  试验因素及水平
No. Factor 7 d strength/MPa 28 d strength/MPa
A B C D E Flexural strength Compressive strength Flexural strength Compressive strength
1 1 1 1 1 1 18.9 93.2 18.3 103.5
2 1 2 2 2 2 17.2 92.1 18.7 103.6
3 1 3 3 3 3 15.7 94.6 19.7 114.6
4 1 4 4 4 4 13.8 80.9 17.2 114.3
5 2 1 2 3 4 15.3 70.6 15.7 90.2
6 2 2 1 4 3 19.2 100.8 20.5 120.5
7 2 3 4 1 2 18.9 109.9 22.7 132.2
8 2 4 3 2 1 12.5 96.7 17.3 98.8
9 3 1 3 4 2 12.7 60.6 12.5 71.3
10 3 2 4 3 1 15.1 94.1 19.0 115.2
11 3 3 1 2 4 8.9 47.9 10.3 60.0
12 3 4 2 1 3 11.2 69.2 14.6 81.4
13 4 1 4 2 3 20.2 109.6 22.9 115.6
14 4 2 3 1 4 15.8 78.9 17.9 97.2
15 4 3 2 4 1 12.0 90.6 13.9 97.4
16 4 4 1 3 2 17.1 95.7 21.3 114.9
表3  正交试验和结果
图2  强度之和K值与各因素掺量的关系
No. Proportioning (The ratio of factor to cementing material) 7 d strength /MPa 28 d strength /MPa Curing type
Water-binder ratio Silica fume/% CFBC fly ash/% Intermediate quartz sand Superplasticize/% Flexural strength Compressive strength Flexural strength Compressive strength
BZ 0.18 5 15 1.2 1.0 21.3 109.7 23.4 130.3 standard curing
R60 26.2 132.5 24.8 132.1 60℃ hot water curing
R90 26.1 139.3 24.7 134.4 90℃ hot water curing
Z60 26.4 133.2 24.4 132.8 60℃ steam curing
Z90 26.0 140.8 23.4 135.0 90℃ steam curing
表4  不同养护制度下掺固硫灰RPC的强度
图3  不同养护制度下掺固硫灰RPC水化7 d的SEM像
图4  不同养护制度下掺固硫灰RPC的收缩率及干缩率
图5  不同养护制度下掺固硫灰RPC水化3 d的XRD谱
图6  不同养护制度下掺固硫灰RPC水化7 d的差热分析图
No. Cementing material proportion/% Shrinkage rate/%
Cement Silica fume CFBC fly ash 3 d 6 d 14 d 28 d 45 d 70 d 90 d 230 d
RPC1 80 5 15 0.0128 0.0060 -0.0038 -0.0092 -0.0230 -0.0322 -0.0644 -0.0639
RPC2 80 20 0 -0.0054 -0.0208 -0.0260 -0.0360 -0.0497 -0.0626 -0.0838 -0.0830
RPC3 95 5 0 0.0067 -0.0034 -0.0056 -0.0113 -0.0248 -0.0380 -0.0650 -0.0648
表5  RPC中胶凝材料的比例及收缩率
图7  3组RPC的收缩率
图8  3组RPC水化7 d的SEM像
图9  3 组RPC的水化3 d的XRD谱
1 P. Richard, M. Cheyrezy,Composition of reactive powder concretes, Cement and Concrete Research, 25(7), 1501(1995)
2 GENG Chunlei,XU Ling, CHEN Hongyan, ZHANG Zuotai, LIN Ling, WANG Xiuteng, YU Dingxin, On research progress and application of reactive powder concrete, Materials Review, 26(3), 70(2012)
2 (耿春雷, 许 零, 陈红岩, 张作泰, 林 翎, 王秀腾, 於定新, 活性粉末混凝土的研究与工程应用进展, 材料导报, 26(3), 70(2012))
3 YAN Zhigang,LI Zhanhui, Existing condition and development of the research on reactive powder cconcrete,
3 (闫志刚, 李占辉, 活性粉末混凝土的研究现状与发展, 中国科技论文在线)
4 BI Qiaowei,YANG Zhaopeng, An outline of the study and the application of the reactive powder concrete, Shanxi Architecture, 34(17), 5(2008)
4 (毕巧巍, 杨兆鹏, 活性粉末混凝土的研究与应用概述, 山西建筑, 34(17), 5(2008))
5 SHI tao,YE qing, Existing problems in the research and application of reactive powder concrete, New Building Materials, (5), 23(2003)
5 (施 韬, 叶 青, 活性粉末混凝土的研究和应用中存在的问题, 新型建筑材料, (5), 23(2003))
6 QIAN Jueshi,ZHENG Hongwei, SONG Yuanming, WANG Zhi, JI Xiankun, Special properties of fly ash and slag of fluidized bed coal combustion, Journal of the Chinese Ceramic Society, 36(10), 1396(2008)
6 (钱觉时, 郑洪伟, 宋远明, 王 智, 纪宪坤, 流化床燃煤固硫灰渣的特性, 硅酸盐学报, 36(10), 1396(2008))
7 ZHU Wenshang,YAN Bilan, JIANG Lizhen, Current situation on utilization of circulated fluidized bed combustion(CFBC) ashes, Coal Ash, (3), 25(2011)
7 (朱文尚, 颜碧兰, 江丽珍, 循环流化床燃煤固硫灰渣研究利用现状, 粉煤灰, (3), 25(2011))
8 XIA Yanqing,YAN Yun, HU Zhihua, Research on affecting factor to performance of non-autoclaved aerated concrete with circulating fluidized bed fly ash, Journal of Wuhan University of Technology, 34(3), 23(2012)
8 (夏艳晴, 严 云, 胡志华, 固硫灰免蒸压加气混凝土性能影响因素的研究, 武汉理工大学学报, 34(3), 23(2012))
9 GAO Yan,LV Shuzhen, DUAN Xinyong, JIA Huixia, WU Congliang, Effect of CFBC fly ash on properties of cement, Journal of Wuhan University of Technology, 35(4), 17(2013)
9 (高 燕, 吕淑珍, 段新勇, 贾会霞, 吴从亮, 固硫灰对水泥性能的影响, 武汉理工大学学报, 35(4), 17(2013))
10 HE Feng,HUANG Zhengyu, Selection of raw materials and parameters of mix design for active powder concrete, New Building Materials, (3), 74(2007)
10 (何 峰, 黄政宇, 活性粉末混凝土原材料及配合比设计参数的选择, 新型建筑材料, (3), 74(2007))
11 P. K. Mehta, P. J. M. Moneteiro, Concrete Microstructure, Properties and Materials (Beijing, China Electric Power Press, 2008)
11 (
12 K. Yoshida,YU Hong, Effect of curing temperatures on the strength development and hydration heat of low thermal cement, Science and Technology of Overseas Building Materials, 15(1), 33(1994)
12 (K. Yoshida,余 红, 养护温度对低热水泥强度发展和水化热的影响, 国外建材科技, 15(1), 33(1994))
13 CAI Anlan,LI Shunkai, YAN Sheng, XU Zhongzi, Influence of curing temperatures on drying shrinkage characteristics of portland cement mortar with high doping of fly ash, Journal of the Chinese Ceramic Society, 33(1), 100(2005)
13 (蔡安兰, 李顺凯, 严 生, 许仲梓, 养护温度对高掺量粉煤灰硅酸盐水泥砂浆干缩性能的影响, 硅酸盐学报, 33(1), 100(2005))
14 GENG Jian,PENG Bo, SUN Jiaying, Effect of steam curing system on pore structure of cement paste, Journal of Building Materials, 14(1), 117(2011)
14 (耿 健, 彭 波, 孙家瑛, 蒸汽养护制度对水泥石结构的影响, 建筑材料学报, 14(1), 117(2011))
15 Physical chemistry teaching research section of Tianjin university, Physical Chemistry, Vol.2 (Beijing, People's Education Press, 1979) p.231-245
15 (天津大学物理化学教研室编, 物理化学(下)(北京, 人民教育出版社, 1979) p.231-245)
16 LI Qinghai,Influence of hydrothermal curing on strength and microstructure of sulfoaluminate cement concrete, Journal of Building Materials, 7(1), 29(2004)
16 (李清海, 湿热养护硫铝酸盐水泥混凝土的强度及微结构, 建筑材料学报, 7(1), 29(2004))
17 XIE Ying,HOU Wenping, WANG Xiangdong, Research on application of differential thermal analysis in cement hydration, Cement, (5), 44 (1997)
17 (谢 英, 侯文萍, 王向东, 差热分析在水泥水化研究中的应用, 水泥, (5), 44 (1997))
18 YANG Nanru, YUE Wenhai, The Handbook of Inorganic Metalloid Materials Atlas (Wuhan, Wuhan University of Technology Press, 2000)
18 (杨南如, 岳文海, 无机非金属材料图谱手册 (武汉, 武汉工业大学出版社, 2000)
19 H. F. W. Taylor, Cement Chemistry (London, Academic Press, 1990)p.374-379
20 SHEN Wei, HUANG Wenxi, MIN Panrong, Cement Technology (Wuhan, Wuhan University of Technology Press , 1991)p.248-249
20 (沈威, 黄文熙, 闵盘荣, 水泥工艺学 (武汉, 武汉工业大学出版社, 1991)p.248-249)
21 SHEN Yang,Effect of the silica fume on the early shrinkage of hardened cement paste, Journal of Building Materials, 5(4), 375(2002)
21 (沈 洋, 硅灰对硬化水泥浆体早期收缩的影响, 建筑材料学报, 5(4), 375(2002))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 邓海龙, 刘兵, 郭扬, 康贺铭, 李明凯, 李永平. 基于内部失效机理预测评估渗碳Cr-Ni齿轮钢的超高周疲劳强度[J]. 材料研究学报, 2023, 37(1): 55-64.
[14] 戚云超, 方国东, 周振功, 梁军. 不同针刺工艺的针刺复合材料面内拉伸强度分析[J]. 材料研究学报, 2023, 37(1): 21-28.
[15] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.