Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (1): 97-102    
  研究论文 本期目录 | 过刊浏览 |
一种快速凝固高温钛合金粉末的热等静压成形致密化过程及其机制研究
李少强1, 2 陈志勇1 王志宏3 刘建荣1 王清江1 杨 锐1
1. 中国科学院金属研究所 沈阳 110016
2. 西部超导材料科技股份有限公司 西安 710018
3. 中航工业沈阳发动机设计研究所 沈阳 110000
The Densification of Rapid Solidification High Temperature Titanium Alloy Powder by Hot Isostatic Pressing
LI Shaoqiang1, 2 CHEN Zhiyong1 WANG Zhihong3 LIU Jianrong1 WANG Qingjiang1*
YANG Rui1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Western Superconducting Technologies Co. Ltd., Xi'an 710018
3. AVIC Shenyang Engine Design & Research Inistitute, Shenyang 110000
引用本文:

李少强,陈志勇 王志宏 刘建荣 王清江 杨 锐. 一种快速凝固高温钛合金粉末的热等静压成形致密化过程及其机制研究[J]. 材料研究学报, 2013, 27(1): 97-102.
LI Shaoqiang, CHEN Zhiyong WANG Zhihong LIU Jianrong WANG Qingjiang*
YANG Rui. The Densification of Rapid Solidification High Temperature Titanium Alloy Powder by Hot Isostatic Pressing[J]. Chinese Journal of Materials Research, 2013, 27(1): 97-102.

全文: PDF(9178 KB)  
摘要: 研究了一种快速凝固高温钛合金粉末热等静压(HIP)成形的致密化过程及其机制。当HIP成形温度低于500℃时, 快速凝固高温钛合金粉末的颗粒相互靠近并重排, 相对致密度由64.5%提高到81%, 粉末颗粒间为点接触, 没有发生明显的塑性变形; 当HIP成形温度提高到500-700 ℃时, 粉末颗粒发生显著的塑性变形, 相对致密度迅速提高到97%; 当HIP成形温度高于700℃后, 粉末颗粒间的接触面较大, 几何强化效应显著, 外界压力不足以使粉末进一步变形, 粉末体通过扩散蠕变完成致密化。
关键词 金属材料快速凝固高温钛合金粉末热等静压致密化过程及其机制    
Abstract:ABSTRACT The densification process and mechanism of a rapid solidification high temperature titanium alloy by hot isostatic pressing has been investigated systemically. The relative density of the hot isostatic pressing (HIP) specimen at 500 ℃ increased from the initial packing density of 64.5% to 81% through approaching and rearrangement of powder particles. The relative density of the specimen HIPed at 500-700 ℃ increased to 97% through plastic deformation of powder particles during which the interparticle contact areas become larger. The relative density of the specimen HIPed at above 700 ℃ increased through powder particles power-law creep and lattice / boundary diffusion.
    
ZTFLH:  TG146.23  
1 F. H. Froes, H. Friedrich, J. Kiese, D. Bergoint, Titanium in the family automobile: the cost challenge, JOM, 56(2), 40(2004)
2 D. Whittaker, B. Ginty, B. Hopkins, Finding pathways to future titanium success, Met. Powder Rep., 60(10), 27(2005)
3 E. B. Taddei, V. A. R. Henriques, C. R. M. Silva, C. A. A. Cairo, Characterization of Ti-35Nb-7Zr-5Ta alloy produced by powder metallurgy, Mater. Sci. Forum, 498-499, 34(2005)
4 L. Wang, Z. B. Lang, H. P. Shi, Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy, Trans. Nonferrous Met. Soc. China, 17, 639(2007)
5 M. Jackson, K. Dring, A review of advances in processing and metallurgy of titanium alloys, Mater. Sci. Tech., 22(8), 881(2006)
6 F. H. Froes, R. Carbonara, Application of rapid solidification, J. Metals., 40, 20(1988)
7 C. Suryanarayana, F. H. Froes, R. G. Rowe, Rapid solidification processing of titanium-alloys, Int. Mater. Rev., 36(3), 85(1991)
8 N. F. Anoshkin, G. G. Demchenkov, Material science and technological aspects of rapidly solidified titanium alloy production, Mater. Sci. Eng. A, 243, 263(1998)
9 S. J. Savage, F. H. Froes, Production of rapidly solidified metals and alloys, J. Metals., 36, 20(1984)
10 U. Habel, B. J. Mctiernan, HIP temperature and properties of a gas-atomized g-titanium aluminide alloy, Intermetallics, 12(1), 63(2004)
11 TANG Huiping, HUANG Baiyun, LIU Yong, OUYANG Hongwu, Progress in the densification of powder metallurgical titanium alloys, Rare Metal Materials and Engineering, 32(9), 677(2003)
(汤慧萍, 黄伯云, 刘 咏, 欧阳洪武, 粉末冶金钛合金致密化研究的进展, 稀有金属材料工程, 32(9), 677(2003))
12 M. Dietze, H. P. Buchkremer, D. St?ver, Densification behavior of a PM titanium alloy during HIP, Met. Powder Rep., 46(10), 30(1991)
13 K. T. Kim, H. C. Yang, Densification behavior of titanium alloy powder during hot pressing, Mater. Sci. Eng., A313, 46(2001)
14 K. T. Kim, H. C. Yang, S. T. Hong, Densification behavior of titanium alloy powder compacts at high temperature, Powder Metall., 44(1), 34(2001)
15 D. P. Delo, R. E. Dutton, S. L. Semiatin, H. R. Piehler, Modeling of hot isostatic pressing and hot triaxial compaction of Ti-6Al-4V powder, Acta Mater., 47(11), 3159(1999)
16 H. V. Atkinson, S. Davies, Fundamental aspects of hot isostatic pressing: an overview, Metall. Mater. Trans. A, 31A, 2981(2000)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.