Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (2): 124-128    
  研究论文 本期目录 | 过刊浏览 |
磁场作用下偏晶合金凝固组织演变的数值分析
康智强, 王恩刚, 张林, 赫冀成
东北大学材料电磁过程研究教育部重点实验室 沈阳 110819
Numerical Analysis of the Microstructure Evolution of Monotectic Alloys in Magnetic Field
KANG Zhiqiang, WANG Engang, ZHANG Lin, HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
引用本文:

康智强 王恩刚 张林 赫冀成. 磁场作用下偏晶合金凝固组织演变的数值分析[J]. 材料研究学报, 2011, 25(2): 124-128.
, . Numerical Analysis of the Microstructure Evolution of Monotectic Alloys in Magnetic Field[J]. Chin J Mater Res, 2011, 25(2): 124-128.

全文: PDF(956 KB)  
摘要: 建立偏晶合金难混溶区凝固过程的两相数学模型, 模拟研究了有、无磁场Al--10%Bi过偏晶合金微观组织演变, 研究了温度、速度、第二相体积分数等物性参数对凝固组织宏观偏析的影响。结果表明, 在磁场作用下温度场为中心对称分布, 更有利于第二相液滴的均匀分布; 电磁力抵消了部分重力和Marangoni力, 使无磁场时外环流的速度场变为有磁场时斜向下的速度场, 且速度明显降低, 从而减轻了强对流导致的重力偏析; 在磁场的作用下, 试样底部第二相的体积分数减小, 凝固组织宏观偏析得到改善。
关键词 金属材料磁场数值模拟微观组织演变偏晶合金宏观偏析    
Abstract:A two–phase mathematical model for the solidification process of monotectic alloys through the miscibility gap was established. The effect of magnetic field on the microstructural evolutions of an Al–10%Bi hypermonotectic alloy was investigated, and the effect of temperature, velocity and second phase volume fraction distribution on the macrosegregation were analyzed. The results showed that the centrosymmetric distribution of temperature field in the magnetic field was more advantageous to the uniform distribution of second phase droplets. Because partial gravity force and Marangoni force were counteracted by the Lorentz force, the velocity field changed from the outward circumfluence to the moving downward slope form in the magnetic field, and the velocity reduced obviously, thus the gravity
segregation caused by strong convection was suppressed. Second phase volume fraction reduced in the specimen bottom in the magnetic field, and the macrosegregation was improved.
Key wordsmetallic materials    magnetic field    numerical simulation    microstructural evolution    monotectic alloy    macrosegregation
收稿日期: 2010-08-30     
ZTFLH: 

TG244

 
基金资助:

国家高技术研究发展计划2007AA03Z519, 国家自然科学基金项目50574027和50901019, 高等学校博士学科点专项科研基金20070145062, 以及高等学校学科创新引智计划B07015资助项目。

1 B.Prinz, A.Romero, L.Ratke, Casting process for hypermonotectic alloys under terrestrial conditions, J. Mater. Sci., 30(18), 4715(1995)

2 J.He, J.Z.Zhao, H.L.Li, X.F.Zhang, Q.X.Zhang, Directional solidification and microstructural refinement of immiscible alloys, Metall. Mater. Trans. A, 39A(5), 1174(2008)

3 S.Yang, W.J.Liu, Effects of transverse magnetic field during directional solidification of monotectic Al–6.5wt%Bi alloy, J. Mater. Sci., 36, 5351(2001)

4 H.Yasuda, I.Ohnaka, O.Kawakami, K.Ueno, K.Kishio, Effect of magnetic field on solidification in Cu–Pb monotectic alloys, ISIJ Int., 43(6), 942(2003)

5 H.Yasuda, I.Ohnaka, S.Fujimoto, N.Takezawa, A.Tsuchiyama, T.Nakano, K.Uesugi, Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field, Scripta Mater., 54(4), 527(2006)

6 H.L.Li, J.Z.Zhao, Directional solidification of an Al–Pb alloy in a static magnetic field, Comput.n Mater.n Sci.n, 46(4), 1069(2009)

7 P.Th´evoz, J.nL.Desbiolles, M.nRappaz, Modeling of equiaxed microstructure formation in casting, Metall. Mater. Trans. A, 20A(2), 311(1989)

8 WANG Tongmin, YAO Shan, ZhANG Xingguo, JIN Junze, M.Wu, A.Ludwig, B.Pustal, A.B¨uhrig–Polaczek, Modelling of the thermo–solutal convection, shrinkage flow and grain movement during globular equiaxed solidification in a multi–phase system I. Three–phase flow model, Acta Metallurgica Sinica, 42(6), 584(2006)

(王同敏, 姚山, 张兴国, 金俊泽, M.Wu, A.Ludwig, B.Pustal, A.Buhrig--Polaczek, 等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒运动的数值模拟I.三相流模型, 金属学报, 42(6), 584(2006))9 L.Ratke, S.Diefenbach, Liquid immiscible alloys, Mater. Sci. Eng., R, 15(7–8), 263(1995)

10 M.H.Wu, A.Ludwig, A three–phase model for mixed columnar–equiaxed solidification, Metall. Mater. Trans. A, 37A(5), 1613(2006)

11 J.Z.Zhao, S.Drees, L.Ratke, Strip casting of Al–Pb alloys–a numerical analysis, Mater. Sci. Eng., A, 282(1–2), 262(2000)

12 G.Kaptay, On the temperature gradient induced interfacial gradient force, acting on precipitated liquid droplets in monotectic liquid alloys, Mater. Sci. Forum, 508, 269(2006)

13 G.Phanikumar, P.Dutta, R.Galun, K.Chattopadhyay, Microstructural evolution during remelting of laser surface alloyed hyper–monotectic Al–Bi alloy, Mater. Sci. Eng., A, 371(1–2), 91(2004)

14 L.Ratke, G.Korekt, S.Drees, Phase separation and solidification of immiscible metallic alloys under low gravity, Adv. Space Res., 22(8), 1227(1998)

15 H.L.Li, J.Z.Zhao, Q.X.Zhang, J.He, Microstructure formation in a directionally solidified immiscible alloy, Metall. Mater. Trans. A, 39A(13), 3308(2008)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.