Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (4): 424-428    
  研究论文 本期目录 | 过刊浏览 |
钛纳米管的制备和对铀离子的吸附
常阳, 张麟熹, 罗明标, 廖桢葳, 陈中胜
东华理工大学应用化学系 抚州 344000
Synthesis and Adsorptive Removal for Uranium (VI) Ions of Titanate Nanotubes
CHANG Yang, ZHANG Linxi, LUO Mingbiao, LIAO Zhenwei, CHEN Zhongsheng
Department of Applied Chemistry, East China Institute of Technology, Fuzhou 344000
引用本文:

常阳 张麟熹 罗明标 廖桢葳 陈中胜. 钛纳米管的制备和对铀离子的吸附[J]. 材料研究学报, 2010, 24(4): 424-428.
, , , , . Synthesis and Adsorptive Removal for Uranium (VI) Ions of Titanate Nanotubes[J]. Chin J Mater Res, 2010, 24(4): 424-428.

全文: PDF(878 KB)  
摘要: 

以钛酸丁酯为钛源采用水热法制备钛纳米管, 用透射电镜和X射线衍射分析(XRD)表征材料的形貌和组成以及N2吸附/脱附比表面积的测试, 研究了钛纳米管对铀离子的吸附。结果表明, 钛纳米管的外径为8 nm, 管长度达2 μm, 由Na2Ti3O7与H3Ti3O7共存组成; 吸附铀容量随着温度的升高、震荡时间的增加平缓升高, 最大吸附pH值为5, 饱和吸附容量达62.9 mg/g, 吸附等温线符合Langmuir和Freundlich等温吸附模型。热力学研究表明, 该吸附是吸热自发过程, 回收率随着铀量的增加而逐步减小, 吸附铀的钛纳米管比未吸附铀的比表面积小。

关键词 金属材料  吸附铀  钛纳米管  水热法    
Abstract

Titanate nanotubes have been synthesized by a hydrothermal method using tetrabutyl as titanium source. The prepared sodium titanate nanotubes were applied in the adsorption of uranium ions. The determination of the structure of the materials by TEM and XRD showed that titanate nanotubes compose of Na2Ti3O7 and H3Ti3O7 with external diameter of 8 nm, tube length up to 2 μm. The investigation of adsorption of uranium ions demonstrated that adsorption capacity growed gradually with the increase of temperature and shock time, and achieved maximum adsorption capacity at pH 5.5. The adsorption isotherm accorded with Langmuir and Freundlich matrix. Thermodynamic studies showed that the adsorption is endothermic spontaneous process. The recovery studies showed that the recovery graduately decrease with the increasing of uranium content. N2 adsorption/desorption tests found that the surface area of titanate nanotubes adsorbed uranium ions were smaller than previous.

Key wordsmetallic materials     adsorption uranium     titanate nanotubes      hydrothermal method
收稿日期: 2010-04-01     
ZTFLH: 

TG146

 
基金资助:

国防基础科研A3420060146, 江西省自然科学基金2007GZH216,江西省教育厅青年基金GJJ09527和东华理工大学研究生创新基金DYCA10013资助项目。

参考文献 [1] 袁涛, 王晓宇, 粟再新, 陈志. 核废物处理途径的探讨[J]. 核科学技术与工程, 2004, 4(10): 861–867. [2] Sridhar Komarneni, Rustum Roy, Use of Y–zirconium phosphate for Cs removal from radioactive waste, J. Nature, 1982, 299: 707. [3] Sridhar Komarneni, Rustum Roy,A Cesium-Selective Ion Sieve Made by Topotactic Leaching of Phlogopite Mica, J. Science 1988, 239: 1286–1288. [4 ] William J. Paulus, Sridhar Komarneni, Rustum Roy, Bulk synthesis and selective exchange of steontium ions in Na4 Mg 6Al4 Si4 O20 F4 mica , J. Nature11992, 357: 571–573. [5] May Nyman, Akhilesh Trioathi, John B. Parise, R.obert S. Maxwell, Tina M. Nenoff, Sandia octahedral molecular sieves(soms): structural and property effects of charge-balancing theMⅣ-Substituted(M=Ti, Zr) Niobate Framework, J. Am. Chem. Soc. 2002, 124: 1704. [6] Huai Yong Zhu, Xue Ping Gao, YingLan, De ying Song, Ying Xin Xi, Jin cai Zhao, Hydroden titanate nanofibers covered with anatase nanocrystals: a delicate structure achieved by the wet chemistry reaction of the titnate nanofibers, J. Am. chem. soc. 2004, 126: 8380 –8381. [7] Huai Yong Zhu, Ying Lan, Xue Ping Gao, Zhan Feng Zheng, De ying Song, Jin cai. Zhao, J. Am, chem. Soc. 2005, 127: 6730 – 6736. [8] Gil-Sung Kim, Young-Soon Kim,Hyung-Kee Seo and Hyung-ShikShi Hydrotherm alsynthesis of titanate nanotubes followed by electrodeposition process Korean J. Chem. Eng, 2006, 23 (6): 1037–1045. [9] 刘国宏, 张新荣, 朱永法. 纳米材料吸附剂的研究进展[J]. 分析化学, 2005, 33(12): 1787–1793. [10] Xing Wu, Qi-Zhong Jiang, Zi-Feng Ma, Min Fu, Wen-Feng Shangguan, Synthesis of titania nanotubes by microwave irradiation, Solid State Communications, 2005, 136: 513–517 [11] 龚强, 江志东, 田峰, 蒋淇忠, 马紫峰. 材料科学与工程学报, 2007, 25(1): 43–47. [12] Dong Jiang Yang, Zhan Feng Zheng, Huai Yong Zhu, *Hong Wei Liu,and Xue Ping Gao*, Adv.Mater. 2008, 20, 2777–2781. [13] 王美丽, 宋功保, 李健, 张宝述. 水热法制备钛酸盐纳米管研究进展[J]. 材料导报, 2006, 11 (20): 121–123. [14] Takayoshi Sasaki, Fathi Kooli, Masaki lida, Yuichi Michiue, Satoshi Takenouchi, Yoshiyuki Yajima, Fujio lzumi, Bryan C. Chakoumakos, and MamoruWatanabe, A Mixed Alkali Titanatewith the Lepidocrocite-like Layered Structure. Preparation, Crystal Structure, Protonic Form, and Acid-Base Intercalation Properties, J.Chem Mater, 1998, 10: 4123–4128.
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.