Please wait a minute...
材料研究学报  2004, Vol. 18 Issue (3): 246-250    
  论文 本期目录 | 过刊浏览 |
三元青铜/环境界面上物质转移的化学行为
王菊琳;许淳淳;吕国诚
王菊琳北京化工大学 100029
Chemical behavior of mass transfer at the bronze/environment interface
;;
王菊琳北京化工大学 100029
引用本文:

王菊琳; 许淳淳; 吕国诚 . 三元青铜/环境界面上物质转移的化学行为[J]. 材料研究学报, 2004, 18(3): 246-250.

全文: PDF(1649 KB)  
摘要: 用模拟闭塞电池法(O.C.) 研究了青铜在模拟环境介质0.028 mol$\cdot$L$^{-1}$ NaCl + 0.01 mol$\cdot$L$^{-1}$ Na$_{2}$SO$_{4}$ + 0.016 mol$\cdot$L$^{-1}$NaHCO$_{3}$ 中的局部腐蚀孔内或裂纹内的化学变化. 通电32 h后闭塞区内溶液的pH值由7.00降至5.02, 与此同时Cl$^{-}$和SO$^{2-}_{4}$向闭塞区内迁移, 其浓集倍数分别是6.31和2.93; 测定了闭塞区内外Cu、Sn、Pb金属离子的浓度, 据此计算出溶解因子$f_{\rm Sn/Cu}$小于1, $f_{\rm Pb/Cu}$大于1, 表明青铜中各元素选择性腐蚀的顺序为Pb$>$Cu$>$Sn, 腐蚀速度Pb$>$Cu$>$Sn; 用XRD分析了腐蚀产物的组成, 解释了青铜文物表面腐蚀产物的分层现象, 即从里到外为CuCl, CuCl和Cu$_{2}$O, Cu的二价化合物.
关键词 金属材料青铜环境溶解因子XRD    
Abstract:A simulated occluded cell (O.C.) was used on the study of chemical changes in the local corrosion pits or crevices of archaeological bronze in simulated environment medium (0.028 mol$\cdot$L$^{-1}$ NaCl + 0.01 mol$\cdot$L$^{-1}$ Na$_{2}$SO$_{4}$ + 0.016 mol$\cdot$L$^{-1}$ NaHCO$_{3}$). It is found that the pH value decreases from 7.00 to 5.02 as anodic current passes the cell for 32 hours, meanwhile Cl$^{-}$ and SO$^{2-}_{4}$ migrate into the O.C. and their concentrate rate reachs 6.31 and 2.93, respectively. The metallic ion concentrations of Cu, Sn, and Pb in the O.C. and bulk solution were measured which were used to calculate the dissolution factors, $f_{\rm Sn/Cu}$ and $f_{\rm Pb/Cu}$. The results of $f_{\rm Sn/Cu}<$1 and $f_{\rm Pb/Cu}>$1 indicate that the selective dissolution order and corrosion rates are Pb$>$Cu$>$Sn. The composition of corrosion products was analyzed and how the products are layered on bronze surface is explained. The corrosion products from inner to outer are CuCl, CuCl and Cu$_{2}$O, cupric compounds respectively.
Key wordsmetallic materials    bronze    environment    dissolution factor    XRD
收稿日期: 2004-07-19     
ZTFLH:  TG174  
1 Yoichiro Ichikawa,Yasumasa Akagawa,Hirosama Nikai and Hiromichi Tsuru,Tissue compatibility and stability of a new zirconia ceramic in vivo,The Journal of Pros- thetic Dentistry,68(2),322(1992)
2 WANG Dalin,LIU Ling,Review on application for dental ceramics,Foreign Medicine Sciences:Fascicule of Biomed- ical Engineering,20(2),97(1997) (汪大林,刘玲,牙科陶瓷材料应用研究现状,国外医学(生物医学工程分册),20(2),97(1997))
3 R.H.J.Hannink,P.M.Kelly,B.C.Muddle,Transformation toughening in zirconia-containing ceramics,Journal of American Ceramic Society,83(2),461(2000)
4 Massimiliano Guazzato,Kaarel Proos,Linda Quach and Michael Vincent Swain,Strength,reliability and mode of fracture of bilayered porcelain/zirconia(Y-TZP)dental ceramics,Biomateriais,25(20),5045(2004)
5 AndréR.Studart,Frank Filser,Peter Kocher and Ludwig J.Gauckler,Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges, Dental Materials,23(1),106(2007)
6 Harry P.Papanagiotou,Steven M.Morgano,Russell A. Giordano and Richard Pober,In vitro evaluation of low- temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP den- tal ceramics,The Journal of Prosthetic Dentistry,96(3), 154(2006)
7 Anders Sundh,Gran Sjgren,Fracture resistance of all-ceramic zirconia bridges with differing phase stabi- lizers and quality of sintering,Dental Materials,22(8), 778(2006)
8 O.Vasylkiv,Y.Sakka,V.Skorokhod,Low-temperature processing and mechanical of zirconia and zirconia-alu- mina nanoceramics,Journal of the American Ceramic So- ciety,86(2),299(2003)
9 X.W.Huang,S.W.Wang,X.X.Huang,Microstructure and mechanical properties of ZTA fabricated by liquid phase sintering,Ceramics International,29(7),765(2003)
10 YU Qinghua,WANG Jieqiang,ZHENG Shaohua,GAO Xinrui,WANG Yong,Preparation of ZTA nanoceramic composites by liquid-phase precipitation method,Acta Materiae Compositae Sinica,23(3),108(2006) (于庆华,王介强,郑少华,高新睿,王勇,液相沉淀法制备ZTA纳米复相陶瓷,复合材料学报,23(3),108(2006))
11 WANG Xin,YU Xuegang,SHAN Yan,SUN Yong,FAN Wentao,LIU Zifeng,On the fracture model of nano ZrO_2/micro Al_2O_3 composite ceramics,Chinese Journal of Materials Research,21(5),482(2007) (王听,于薛刚,单妍,孙勇,范文涛,刘子峰,纳米ZrO_2与微米Al_2O_3复合陶瓷的断裂模式,材料研究学报,21(5),482(2007))
12 LIN Jie,YANG Jian,LIU Jiao,QIU Tai,ZTA ceramics with nanometer composite powders,Journal of Materials Science and Engineering,25(5),760(2007) (林洁,杨建,刘娇,丘泰,用包裹纳米复合粉体制备ZTA陶瓷,材料科学与工程学报,25(5),760(2007))
13 DUAN Guorong,YANG Xujie,LU Lude,WANG Xin, Preparation of single-phase nanosized zirconia by sol-gel and distillation method,Journal of Synthetic Crystals, 35(2),327(2006) (段国荣,杨绪杰,陆路德,汪信,溶胶-凝胶/共沸蒸馏法制备单相氧化锆超细粉,人工晶体学报,35(2),327(2006))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.