|
|
Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能 |
杨志儒( ), 侯文涛, 周海, 杨子, 何浩, 金超 |
江苏大学机械工程学院 镇江 212013 |
|
Synthesis of High-performance Core-shell Structured Electrodes of Co3O4/Co9S8 for Quasi-solid-state Supercapacitors |
YANG Zhiru( ), HOU Wentao, ZHOU Hai, YANG Zi, HE Hao, JIN Chao |
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
引用本文:
杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
Zhiru YANG,
Wentao HOU,
Hai ZHOU,
Zi YANG,
Hao HE,
Chao JIN.
Synthesis of High-performance Core-shell Structured Electrodes of Co3O4/Co9S8 for Quasi-solid-state Supercapacitors[J]. Chinese Journal of Materials Research, 2025, 39(8): 569-582.
[1] |
Li T, Saadatnia Z, Chen T H, et al. Facile material extrusion of 3D wearable conductive-polymer micro-super-capacitors [J]. Addit. Manuf., 2023, 74: 103714
|
[2] |
Mohseni S, Brent A C. Probabilistic sizing and scheduling co-optimisation of hybrid battery/super-capacitor energy storage systems in micro-grids [J]. J. Energy Storage, 2023, 73: 109172
|
[3] |
Priya R P, Baradeswaran A, Bagubali A. Energy storage improvement of graphene based super capacitors [J]. Mater. Today. Proc., 2023, 78: 919
|
[4] |
SappaniMuthu M, Ajith P, Agnes J, et al. Optical, thermal, electrochemical, properties of nano graphene oxide / nickel oxide nano composite suitable for super capacitor applications [J]. Mater. Today. Proc., 2023. doi: 10.1016/j.matpr.2023.05.615
|
[5] |
Yadav D K, Yadav A, Singh S, et al. Study of bismuth oxide/polystyrene composites as flexible electrodes for super capacitors [J]. Mater. Today. Proc., 2023. doi: 10.1016/j.matpr.2023.02.327
|
[6] |
Awad M A, Hendi A A, Natarajan S, et al. Wet chemical synthesis and characterization of FeVO4 nanoparticles for super capacitor as energy storage device [J]. J. King Saud Univ. Sci., 2023, 35(8): 102857
|
[7] |
Munirathnam R, Rumana F S M, Manjunatha S, et al. Tulsi mediated green synthesis of zinc doped CeO2 for super capacitor and display applications [J]. J. Sci.-Adv. Mater. Dev., 2023, 8(2): 100551
|
[8] |
Tian H, Liu H X, Sun X, et al. Se confined in N-doped mesoporous carbon opal as anode for K-Se capacitors with super-long cycle life [J]. J. Alloy. Compd., 2023, 937: 168376
|
[9] |
Zhang W Y, Li X N, Kang H W, et al. Redox-active 7-aminoindole and carbon nanotubes co-modified reduced graphene oxide for Zn-ion hybrid capacitors with excellent energy density and super-long cycling stability [J]. J. Power Sources, 2023, 562: 232789
|
[10] |
Girirajan M, Bojarajan A K, Pulidindi I N, et al. An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors [J]. Coord. Chem. Rev., 2024, 518: 216080
|
[11] |
Lamba P, Singh P, Singh P, et al. Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance [J]. J. Energy Storage, 2022, 48: 103871
|
[12] |
Siveswari A, Gowthami V. Hierarchical NiCo2O4 needle-like heterostructure arrays anchored on WO3 as high- performance asymmetric supercapacitors for energy storage applications [J]. Chem. Phys. Impact., 2024, 9: 100666
|
[13] |
Ahuja K, Sallaz V, Nuwayhid R B, et al. Ultra-thin on-chip ALD LiPON capacitors for high frequency application [J]. J. Power Sources, 2023, 575: 233056
|
[14] |
Meenakshi G, Manjunath B C, Prashantha S C, et al. Super capacitor, electrochemical measurement and sun light driven photocatalytic applications of CuFe2O4 NPs synthesized from bio-resource extract [J]. Sens. Int., 2023, 4: 100237
|
[15] |
Siddiqui R, Rani M, Ahmad Shah A, et al. Fabrication of tricarboxylate-neodymium metal organic frameworks and its nanocomposite with graphene oxide by hydrothermal synthesis for a symmetric supercapacitor electrode material [J]. Mater Sci. Eng., 2023, 295B: 116530
|
[16] |
Issa M Y A, Atay G Y. Investigation of radar absorbing hybrid structures reinforced by cobalt oxide (Co3O4), copper-copper oxide (Cu-Cu2O), and barium hexaferrite (BaFe12O19) synthesized by sol-gel [J]. Mater. Chem. Phys., 2024, 318: 129307
|
[17] |
Luo J B, Wang X Z, Zhang J, et al. Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution [J]. J. Fuel Chem. Technol., 2023, 51(5): 571
|
[18] |
Mustafa A, Alsafari I A, Somaily H H, et al. Fabrication, characterization of NiO–Co3O4/rGO based nanohybrid and application in the development of non-enzymatic glucose sensor [J]. Physica, 2023, 648B: 414404
|
[19] |
Tian X X, Yin M, Zhang L, et al. Mesoporous ZnO@CO3O4 nanosphere for sensitive detection of 3-hydroxy-2-butanone [J]. J. Photochem. Photobiol., 2022, 11: 100135
|
[20] |
Alhaddad M, Ismail A A, Alghamdi Y G, et al. Co3O4 nanoparticles accommodated mesoporous TiO2 framework as an excellent photocatalyst with enhanced photocatalytic properties [J]. Opt. Mater., 2022, 131: 112643
|
[21] |
Eremina E A, Matushkina A D, Malakhova A G, et al. Aerogels based on reduced graphite oxide and cobalt oxide nanoparticles (rGO@Co3O4) as sorbents of antibiotics and dyes from aqueous solutions [J]. Mendeleev Commun., 2024, 34(3): 376
|
[22] |
Zhang Y J, Yan H C, Liu J M, et al. Simple preparation of Co3O4 with a controlled shape and excellent lithium storage performance [J]. Int. J. Electrochem. Sci., 2020, 15(4): 2894
|
[23] |
Ali F, Khalid N R, Tahir M B, et al. Capacitive properties of novel Sb-doped Co3O4 electrode material synthesized by hydrothermal method [J]. Ceram. Int., 2021, 47(22): 32210
|
[24] |
Li Y L, Wang S C, Wu J K, et al. One-step hydrothermal synthesis of hybrid core-shell Co3O4@SnO2-SnO for supercapacitor electrodes [J]. Ceram. Int., 2020, 46(10): 15793
|
[25] |
Lu Y, Yang W J, Li W H, et al. Room-temperature sulfurization for obtaining Co3O4/CoS core-shell nanosheets as supercapacitor electrodes [J]. J. Alloy. Compd., 2020, 818: 152877
|
[26] |
Pei D Y, Bao J P, Li Y Y, et al. Three-dimensional Co3O4/CoS hierarchical nanoneedle arrays electrode grown on nickel foam for high-performance asymmetric capacitors [J]. J. Energy Storage, 2022, 51: 104483
|
[27] |
Liu X X, He Q, Wang Y, et al. MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor [J]. Electrochim. Acta, 2020, 346: 136201
|
[28] |
Hadjiev V G, Iliev M N, Vergilov I. The raman spectra of Co3O4 [J]. J. Phys., 1988, 21C(7) : L199
|
[29] |
Ruan H C, Li Y F, Qiu H Y, et al. Synthesis of porous NiS thin films on Ni foam substrate via an electrodeposition route and its application in lithium-ion batteries [J]. J. Alloy. Compd., 2014, 588: 357
|
[30] |
Wen J, Li S Z, Li B R, et al. Synthesis of three dimensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure for high performance supercapacitor application [J]. J. Power Sources, 2015, 284: 279
|
[31] |
Deng S J, Shen S H, Zhong Y, et al. Corrigendum to “Assembling Co9S8 nanoflakes on Co3O4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction” 26 (2017) 1203-1209 [J]. J. Energy Chem., 2021, 57: 544
|
[32] |
Chen H, Mu J J, Bian Y H, et al. A bimetallic sulfide Co9S8/MoS2/C heterojunction in a three-dimensional carbon structure for increasing sodium ion storage [J]. New Carbon Mater., 2023, 38(3): 510
|
[33] |
Li J, Zou Y J, Li B, et al. Polypyrrole-wrapped NiCo2S4 nanoneedles as an electrode material for supercapacitor applications [J]. Ceram. Int., 2021, 47(12): 16562
|
[34] |
Wu Z F, Sun Q L, Huang X S, et al. Cross channel between ordinary supercapacitors and flexible supercapacitors-A flexible supercapacitor based on carbon fiber felt framework [J]. J. Energy Storage, 2024, 103: 114190
|
[35] |
Zhang W F, Shan Y, Yu X G, et al. A Ti3C2T x -encapsulated Mn2+-doped Co(OH)2 nanosheets electrode grown on carbon cloth for low-temperature flexible supercapacitors [J]. Electrochim. Acta, 2025, 513: 145606
|
[36] |
Qiu P F, Tan X N, Huang Z Y, et al. Thiol-functionalized conductive Co-MOF and its derivatives S-doped Co(OH)2 nanoflowers for high-performance supercapacitors [J]. J. Colloid Interface Sci., 2025, 679: 995
|
[37] |
Cheng X Y, Wang D, Ke H Z, et al. Hierarchical NiCo2S4/PANI/CNT nanostructures grown on graphene polyamide blend fiber as effective electrode for supercapacitors [J]. Compos. Commun., 2022, 30: 101073
|
[38] |
Jagdale P B, Patil S A, Sfeir A, et al. Large-area ultrathin 2D Co(OH)2 nanosheets: a bifunctional electrode material for supercapacitor and water oxidation [J]. Mater. Today Energy, 2024, 44: 101608
|
[39] |
Akram A, Liaqat M A, Javed S, et al. Ultrahigh performance asymmetric supercapacitor devices with synergetic interaction between metal organic frameworks/graphene nano platelets and redox additive electrolyte [J]. J. Alloy. Compd., 2022, 891: 161961
|
[40] |
Dong S, Song Y L, Fang Y Z, et al. Microwave-assisted synthesis of carbon dots modified graphene for full carbon-based potassium ion capacitors [J]. Carbon, 2021, 178: 1
|
[41] |
Li L L, Ding Y H, Huang H J, et al. Controlled synthesis of unique Co9S8 nanostructures with carbon coating as advanced electrode for solid-state asymmetric supercapacitors [J]. J. Colloid Interface Sci., 2019, 540: 389
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|